Skip to main content

citations

by Prasanna Hariharan

Version 7
by (unknown)
Version 8
by (unknown)

Deletions or items before changed

Additions or items after changed

1 '''[https://nciphub.org/wiki/FDA_CFD/ComputationalRoundRobin1Nozzle Nozzle home]'''
2
3 ==References Using the benchmark Nozzle and Pump data==
4
5 -
Others are building on this work. Here is a list of references by others using the Nozzle and the Pump models ( as of 11-21-2022).
+
Others are building on this work. [/collections/post/1278/download/Bibliography.docx '''''Here ''''']is a list of references by others using the Nozzle and the Pump models ( as of 11-21-2022).
6 -
+
7 -
----
+
8 -
V&V 40 credibility assessment standard (https://www.asme.org/codes-standards/find-codes-standards/v-v-40-assessing-credibility-computational-modeling-verification-validation-application-medical-devices)
+
9 -
+
10 -
https://www.researchgate.net/profile/Inaki-Caldichoury/publication/337448926_Validations_with_FDA_Benchmarks_of_Medical_Devices_Flows/links/5dd86dbc92851c1feda8cfab/Validations-with-FDA-Benchmarks-of-Medical-Devices-Flows.pdf
+
11 -
+
12 -
https://www.adaptivecorp.com/wp-content/uploads/2017/10/Simulia-ebook-Medical-Devices-Life-Sciences-002-2.pdf#page=7
+
13 -
+
14 -
https://www.dynalook.com/conferences/16th-international-ls-dyna-conference/biomedical-t6-1/t6-1-a-biomedical-067.pdf
+
15 -
+
16 -
https://blog.pointwise.com/2020/08/06/turbulence-model-influence-on-flow-in-the-fda-benchmark-blood-pump/
+
17 -
+
18 -
https://www.degruyter.com/document/doi/10.1515/cdbme-2017-0163/html
+
19 -
https://www.degruyter.com/document/doi/10.1515/cdbme-2020-3020/html
+
20 -
+
21 -
https://www.sciencedirect.com/science/article/abs/pii/S0010482514000067
+
22 -
+
23 -
https://link.springer.com/article/10.1007%2Fs10494-013-9481-9
+
24 -
+
25 -
https://link.springer.com/content/pdf/10.1007/s11517-020-02188-8.pdf
+
26 -
+
27 -
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0092638
+
28 -
+
29 -
https://onlinelibrary.wiley.com/doi/full/10.1002/cnm.2789
+
30 -
https://link.springer.com/chapter/10.1007/978-3-319-59548-1_9
+
31 -
+
32 -
https://onlinelibrary.wiley.com/doi/full/10.1002/cnm.3389
+
33 -
+
34 -
https://akademiabaru.com/submit/index.php/arfmts/article/view/2750
+
35 -
+
36 -
https://aip.scitation.org/doi/full/10.1063/1.5142703
+
37 -
+
38 -
https://onlinelibrary.wiley.com/doi/abs/10.1002/cnm.3228
+
39 -
+
40 -
https://www.mechanika.ktu.lt/index.php/Mech/article/view/20105
+
41 -
+
42 -
https://link.springer.com/article/10.1007/s10237-018-01108-y
+
43 -
+
44 -
https://www.comsol.fr/paper/download/853441/A_Kermani%20Blood%20Damage%20Modeling%20of%20FDA%20Benchmark%20Nozzle-V5-short-B.pdf
+
45 -
+
46 -
https://www.mdpi.com/2311-5521/6/1/4
+
47 -
+
48 -
https://arxiv.org/abs/1701.02179
+
49 -
+
50 -
https://openscholarship.wustl.edu/eng_etds/549/
+
51 -
+
52 -
https://www.proquest.com/openview/d08cc2433a391cdee03a1a6ca5234bc5/1?cbl=18750&pq-origsite=gscholar
+
53 -
https://link.springer.com/article/10.1007%2Fs13239-013-0161-7
+
54 -
+
55 -
https://asmedigitalcollection.asme.org/medicaldiagnostics/article-abstract/4/3/031002/1109303/An-Encounter-With-Lattice-Boltzmann-for-Biomedical
+
56 -
+
57 -
https://link.springer.com/article/10.1007/s13239-021-00526-x
+
58 -
+
59 -
https://onlinelibrary.wiley.com/doi/abs/10.1111/aor.13663
+
60 -
+
61 -
https://link.springer.com/article/10.1007/s40571-019-00241-4
+
62 -
https://www.dynalook.com/conferences/16th-international-ls-dyna-conference/icfd-t12-2/t12-2-d-icfd-046.pdf
+
63 -
+
64 -
+
65 -
https://onlinelibrary.wiley.com/doi/abs/10.1002/cnm.2568
+
66 -
https://www.sciencedirect.com/science/article/abs/pii/S0045793019301422
+
67 -
+
68 -
https://onlinelibrary.wiley.com/doi/abs/10.1111/aor.12837
+
69 -
+
70 -
https://link.springer.com/article/10.1007/s10237-021-01482-0
+
71 -
+
72 -
https://journals.lww.com/asaiojournal/Fulltext/2019/11000/Crucial_Aspects_for_Using_Computational_Fluid.16.aspx
+
73 -
+
74 -
https://journals.sagepub.com/doi/full/10.1177/0391398818785558
+