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DRUG DISCOVERY

~108 products

PRE CLINICAL

11,000 products

CLINICAL TRIALS

6,300 products

FDA APPROVAL

111 products
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Target based compound

screening 1080 estimated drug-like compounds

COMPOUND
DISCOVERY

Mining massive building block or de-novo
generated libraries

INTERESTING?

Does this compound inhibit or interact with
the target? O

TOXICOLOGY

Is this compound reasonably safe?

O

SYNTHESIS

Can we buy it, is it from available building
blocks, or do we need to hire a medicinal O
chemist?

U.S. DEPARTMENT OF  Argonne National Laboratory is a
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GOAL:

Design an intelligent system to screen a space of drugs efficiently and intelligently.

LETTER

https://doi.org/10.1038/541586-019-1540-5

Anthropogenic biases in chemical reaction data
hinder exploratory inorganic synthesis

Xiwen Jia!, Allyson Lynch!, Yuheng Huang', Matthew Danielson', Inmaculate Lang’at, Alexander Milder!, Aaron E. Ruby’,
Hao Wang], Sorelle A. Friedler?*, Alexander J. Norquist'* & Joshua Schrier!?*

ARTICLE

https://doi.org/10.1038/541586-019-0917-9

Ultra-large library docking for
discovering new chemotypes

Jiankun Lyu"2!0, Sheng Wang®*1°, Trent E. Balius"'°, Isha Singh"!?, Anat Levit!, Yurii S. Moroz*>®, Matthew J. O’Meara, Tao Che*,
Enkhjargal Algaa!, Kateryna Tolmachova’, Andrey A. Tolmachev’, Brian K. Shoichet'*, Bryan L. Roth*#%* & John J. Irwin®*
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Bind or not? Experimental

\J Seconds Minutes \—J Hours
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A pipeline unit

Docking\ Sampling pipeline

Time

Deep Learning

Minimization s—===-_. -~ System

Nanosecond simulation Determining if analysis should continue
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Pipelining discovery and screening

1. Generator }(— 1a. Bias

__________________________________________________

2. Structure 3 MD + BFE
Building Calculatlon

‘ Input Target
4. Model
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LAYERED WORKFLOW

> ML Property Prediction Pipeline » UQ Scoring
Filter and
Candidates Optimization
ML «— ML Generator of Candidates «—
A
L v J
« Simulation: Estimation of Properties |« .
Active
Update ML .
Learning
Models ) Prioritizati
S Experiment: Estimation of Properties [* rioritization
Pure ML “constant time” (fast loop) Mixed/Variable time (slow loop)
(Z)ENERGY 12
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> 20,000 candidates/s
N-copies

< 1000 candidates/s
M-copies

Molecular Candidate
Generators

I-VAE, JT-VAE, RL-VAE,
GVAE, GANs, etc.

—

N~

3.3 Billion

Molecules
Training set
SMILES, SELFIES
2-D Images,

2-SDF, 3-SDF, etc.

R
N

Tumor

Molecular
Features

Estimators
Descriptors, FPs

Tumor

10s per drug

R-copies

Features
RNAseq, SNPs
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PROPERTY PREDICTIONS e

I m ag es y 3 D s u rfaces Feinberg, Evan N., et al. "Potentialnet for

molecular property prediction." ACS central
science 4.11 (2018): 1520-1530.
Shape Autoencoder
Decoder with transposed

3D convolutions

Encoder with
3D convolutions

Autoencoder compound
Compound Representation

Representation

Reparametrize

= ‘ ‘
2 vector
Concatenate | (a)

Concatenate

Compound

Pharmacophores

SMILES inpat

chmt

ENCODER
Neural Metwark

Parse SMILES
Uc;“(o”\ o
REPRESENTATION
(Latent Space)

Shape captioning
3D convolution
Encoder

Skalic, Miha, et al. "Shape-Based Generative
Modeling for de Novo Drug Design." Journal
of chemical information and modeling 59.3
(2019): 1205-1214.
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Autoencoder compound
Representation

Vectorized

compound
representation

LSTM decoder

DECODER
Peural Network

SMILES sutput

(2018): 268-276.
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Graph Gather
+ Fully Connected Layers

Mot Probable Decoding
argma pi*t)

Gomez-Bombarelli, Rafael, et al. "Automatic chemical design using a data-
driven continuous representation of molecules." ACS central science 4.2
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Learning Cuve for SMILES AURORA-1 Kinase MMGBSA Minimization Score L g LEamning Cuve for SMILES AURORA-1 Kinase Dock Score
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EXAMPLE: ML FOR DOCKING SCORING

Interested in the left tail

What is r2 score if we just
guess everything in that right
tail is clipped at the normal
distribution? 0.75

Your balanced accuracy? 50%

U.S. DEPARTMENT OF  Argonne National Laboratory is a
ENERGY US. Department of Energy laboratory
managed by UChicago Argonne, LLC
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Each experiment cost $1,000 Here is $100,000, find
Your boss wants to find leads at the five interesting beta

very early stages. lactamase inhibitors

15

He finds 2 interesting compounds

Bob, the experimentalist
Bob’s experiments cost a lot of money
Bob has been working for the company for 10 years



Each experiment cost $1,000
Your boss wants to find leads at the
very early stages.

16

Here is $100,000, find
five interesting beta
lactamase inhibitors

10 experimental data points, randomly

" \

10 experiments he should run

Bob runs 20 experiments, cost $20,000 —but he found 5 leads!

Alice, the ML hacker



The r?
value was

0.2

GO00D

Alice, the ML hacker .m

30000

20000 1

Metrics measure distance in spaces, not real life goals, |

objectives N
. . . . . 0.0

Dreams desires, etc! Especially, not on skewed distributions

10




Each experiment cost $1,000 Here is $100,000, find
Your boss wants to find leads at the some interesting beta

very early stages. lactamase inhibitors

10 experimental data points, randomly

v

"\

10 experiments he should run

Best x% of of your Best x% of of your
experimental values predicted values
EF(COUNT) . ‘ TOpR(yv ZE) M TOpR(gv .CU) ‘
z 76 . TN

18 How many values?



What if we replace the need to simulate every molecule?

Replicating Lyu et al. Giga-Docking with 200x less CPU compute
Trained message-passing network with 500K ampC

{ampC} Regression Detection Surface

10°

» Screen 1% of molecules, you'll
Have 50% of the true top 1%

107!

;Screen 1% of molecules, you'll
Have 70% of the true top 0.05%

F0.4

1073

Screen 10% of molecules,
«  getall of the top 0.1%

Screen top x%

(@ ENERGY (T8 syt 19 Argonne &
* 1 1 H NATIONAL LABORATORY
preliminary work, first approximation of a good model



IBM AC922, 6 GPU node. Balanced
Heavily towards GPU, not CPU

Single threaded algorithms for CPU )
post-processing 5000 Seconds per smiles

| |
E1G0s25150s7:'e,_:_1[50s7s5150s15
1L JHUL JHRub JdH1L JF
i | | | L | | |

Even slower simulations 1 SMILE per second
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RNN SMILES Modeling
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Gupta, Anvita, et al. "Generative recurrent networks for de novo drug
design." Molecular informatics 37.1-2 (2018): 1700111.

Samples from RNN on single GPU (<6 minutes)
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U.S. DEPARTMENT OF _ Argonne National Laboratory is a

rgor
ENERG U.S. Department of Energy laboratory
managed by UChicago Argonne, LLC.

21

1Sélmpling RNN Generator on 4 V100 GPU (first approx., T=1.1)
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In order to keep GPUs and CPUs hot, unique stream of molecules

needs to stay constant

* Database,

Top Experiments
0.001%

Estimated Unique Molecules 27,600 V100 GPUs

lel5s
= total
0.8 + — Unique
2
2 (L6
g
=1
A
Y 04
=
=
= 02
0.0
0 5 10 15 20 25 30
Days Sampling Run
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HIGH THROUGHPUT
SCREENING
Generating

P i@ |'

DRUG DISCOVERY

Database 2 -
* Generative Neural of Leads « Simulation surrogate
Networks models
« Language modeling * Uncertainty calibrated
« Graphical models « Ranking Neural networks
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LAYERED WORKFLOW

> ML Property Prediction Pipeline » UQ Scoring
Filter and
Candidates Optimization
ML «— ML Generator of Candidates «—
A
L v J
« Simulation: Estimation of Properties |« .
Active
Update ML .
Learning
Models ) Prioritizati
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THANKS!
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