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Abstract

Recent work points to a lack of diversity in genomics
studies from genome-wide association studies to somatic
(tumor) genome analyses. Yet, population-specific genetic
variation has been shown to contribute to health disparities
in cancer risk and outcomes. Immortalized cancer cell lines
are widely used in cancer research, from mechanistic stud-
ies to drug screening. Larger collections of cancer cell lines
better represent the genomic heterogeneity found in pri-
mary tumors. Yet, the genetic ancestral origin of cancer cell
lines is rarely acknowledged and often unknown. Using
genome-wide genotyping data from 1,393 cancer cell
lines from the Catalogue of Somatic Mutations in Cancer

(COSMIC) and Cancer Cell Line Encyclopedia (CCLE), we
estimated the genetic ancestral origin for each cell line. Our
data indicate that cancer cell line collections are not re-
presentative of the diverse ancestry and admixture charac-
terizing human populations. We discuss the implications
of genetic ancestry and diversity of cellular models for
cancer research and present an interactive tool, Estimated
Cell Line Ancestry (ECLA), where ancestry can be visualized
with reference populations of the 1000 Genomes Project.
Cancer researchers can use this resource to identify cell line
models for their studies by taking ancestral origins into
consideration.

The Diverse Origins of Cancer Health
Disparities

In the United States, the incidence of certain cancers varies
significantly by race and ethnicity, including some of the most
common cancers such as breast, colorectal, and prostate can-
cers (1). Wide disparities have also been reported in treatment
outcomes and survival (1). As a first step toward addressing
disparities, the NIH Revitalization Act of 1993 resulted in the
establishment of the Office of Research on Minority Health, with
the mandate to conduct and support research that would be
inclusive of minority populations (2). Continued efforts, includ-
ing the 2010 Patient Protection andAffordable Care Act (PPACA),
sought to address cancer care disparities (3). Despite these efforts,
health disparities still exist (1) and exclusion of minority popula-
tions from health-related studies remains a concern (4–7).

Cancer disparities result in differences in risk and outcomes
that are likely to be the result of a complex interplay between
genetics (8, 9) socioeconomic (10–12), environmental fac-
tors (13), and even receipt of treatment (14). The American
Society of Clinical Oncology has proposed strategies for reduc-
ing disparities through insurance reform, access to care, quality
of care, prevention and wellness, research on health care dis-
parities, and diversity in the health care workforce (3). While
these strategies will reduce disparities, they do not address
biological factors. Evidence is accumulating that the cancer
discoveries driving progress in prevention, screening strategies
and treatment derive disproportionately from populations of
European descent. This review focuses on research indicating
variation in biological and molecular aspects of cancers in
populations.

Genetic-based studies have identified differences among ances-
tral populations in tumor biology and clinical response (15).
However, closely associated with these findings are the rather
imprecise social terms of ethnicity and race (16, 17). In this article,
we have followed the convention of referring to genetic ancestry,
and only secondarily comparing to self-reported race and/or
ethnicity (18, 19). However, this area remains controversial (20).
The use of genetic ancestry as a basis for scientific studiesmay help
understand disease prevention and intervention (21, 22)
although this is only one factor among many (23). Assessing the
role of ancestry-associated genetic variations in disease etiology is
further complicated by the recent admixture that characterizes
various populations of the world (24). Hence, an individual's
ancestry can be described by quantifying the proportion of the
genome derived from each contributing population (global
ancestry). Heterogeneity is also observed locally in the genome,
as variability is observed in the ancestral origins of any particular
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segment of chromosomes (local ancestry; ref. 25). Ultimately,
genetics plays a role in the biological characteristics of a cancer in
the form of both germline variation and somatic alterations.
Further research is needed to determine the extent to which
genetic differences align with ancestral genetic changes (26).

Limited Cancer Research in Diverse
Populations

Cancer Genome-Wide Association Studies (GWAS) have
advanced our understanding of the inherited genetic factors
that influence cancer risk. Despite recent progress, however, this
understanding is mostly from data obtained from populations
of European ancestry (27–29). Specifically, cancer GWAS have
pinpointed over 700 risk loci (29), but remarkably, 80% were
first discovered in European ancestry populations, approxi-
mately 15% in East Asians, and less than 1% in African and
Latin American populations (29). Population structure that
may result from ancestry variations in a cohort have been
regarded as a confounder that can lead to spurious signals or
hide true associations, (30–32), and it is only recently that
multiethnic cohorts have emerged as a solution to identify risk
loci in more diverse populations. Despite the challenges asso-
ciated with the use of multiethnic cohorts such as admixture,
genetic heterogeneity, variations in the linkage disequilibrium
structure around causative variants, and imputation (27), there
is a demonstrated benefit to adopt a more inclusive approach.
Evidence is accumulating that relying solely on populations
of European descent results in an incomplete or inaccurate
representation of the genetic susceptibility to cancers (27). For
example, replication of risk loci found in European popula-
tions through GWAS in multiethnic cohorts has revealed
that risk factors may differ in their nature and magnitude of
effect (33). The recent increases in the inclusion of non-
European populations in GWAS has been mostly attributed
to an increase in representation of Asian populations and
collectively, African, Hispanics/Latinos, and native or indige-
nous populations represented less than 4% of the 35 million
samples included in 2,500 studies reported in the GWAS
catalog (34).

Such lack of diversity has also been observed in areas of
cancer research that will have direct consequences on treatment
strategies of patients with cancer. For instance, the identifica-
tion of actionable driver somatic (tumor) mutations has been
the basis of the development of targeted cancer therapies and
identification of molecular tumor subtypes. In the Cancer
Genome Atlas (TCGA) exome sequencing dataset, it was esti-
mated that recurrent somatic mutations with 5% frequency
would be detectable in whites, but not in populations of any
other ethnic origin due to the paucity of samples from those
populations (35). With only 33% of all samples identified as
non-white (35), the TCGA dataset provides limited opportu-
nities to study the relationship between disparities associated
with race and cancer genomes (36). Cancer-related clinical
trials also remain limited in ethnic and racial composition,
limiting the applicability of trial findings (4–6, 37). In 2014,
less than 2% of the NCI's clinical trials focused on non-Euro-
pean populations and only 20% of the randomized control
studies published in higher tier journals analyzed data by race
and ethnicity (7). Despite significant advances in precision
medicine, we risk implementing a standard of care for only

a limited segment of the population without appropriate inclu-
sion of all groups in this type of research (38). We note that this
article addresses the use of genetic ancestry within cell line
studies and is not a comprehensive review of ancestry-related
contributions to health disparities; more comprehensive
reviews of this topic can be found in, for example, refs. 15
and 39–42. To illustrate the research that indicates ancestral-
based disparities exist related to cancer risk, tumor biology, and
therapeutic options or outcomes, we have focused on the
example of breast cancer below.

Ancestral-related health disparities in cancer: breast cancer
The 6q25 breast cancer risk locus clearly illustrates the

variability of risk variants across populations. A GWAS of
Chinese women identified rs2046210 at 6q25.1 (centromeric
to ESR1, which codes for estrogen receptor alpha) associated
with breast cancer risk and validated the association in an
independent European ancestry cohort (43). Further replica-
tion confirmed the finding among Chinese, Japanese, and
European-descent American women, but not among African-
American women (44). Other studies have similarly failed to
identify this association in African-American women (45–48).
In an African-American replication study, only 27% of the
known GWAS hits reached statistical significance, an observa-
tion that was partly explained by differences in linkage dis-
equilibrium architecture around the causative variants as well
as statistical power (49). Interestingly, a Latina breast cancer
GWAS identified a protective variant of Indigenous American
origin at the 6q25 locus, which acts independently of the
previously known risk variants at this locus (50). Thus, var-
iants associated with risk may not validate in other popula-
tions, or even change the direction of risk association (33).
Importantly, polygenic risk scores for stratifying women based
on their inherited risk of developing breast cancer, which have
been developed using data derived largely from European
population GWAS, perform poorly in African-American popu-
lations as a consequence of inverse directionality of 30%–40%
of the susceptibility loci (33).

The BRCA1 and BRCA2 genes, susceptibility genes for hered-
itary breast cancer, also illustrate the impact of ancestral het-
erogeneity (51, 52). In a study of 4,835 Hispanic/Latino breast
cancer individuals from 13 countries in Latin America, the
Caribbean, and Hispanic/Latino individuals in the United
States (52), different frequencies of BRCA1 and BRCA2 variants
were observed. The authors report that in the Bahamas, it was
estimated that 27.1% of breast cancer cases had BRCA patho-
genic variants compared with other regions (typically 1%–5%
BRCA variants observed; ref. 52). Furthermore, BRCA1 variant
p.A1708E was observed in the top 10 most frequent pathogenic
variants from Hispanic/Latino breast cancer individuals, yet
this variant is not reported among the top 20 most frequent
BRCA1 variants (52). Higher frequencies of BRCA pathogenic
variants have also been observed in young black women (53)
and Hispanics in the southwestern United States (54).

Triple-negative breast cancer (TNBC) has been shown to be
more frequent in women of West African ancestry (55). This has
significant clinical relevance as TNBC tumors are aggressive and
often have limited specific therapies available (56). Several
studies have identified an increased proportion of basal-like
breast cancers in populations of African ancestry (57–61).
Increased frequency of TNBC has also been observed in the
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Hispanic/Latino population (62–68), American Indian/Alaska
Native population (64), and women from the Indian subcon-
tinent (69). Interestingly, Filipino women were least likely to
have TNBC (69), suggesting a broad range of variability.

Transcriptional signatures of proliferation and VEGFA-activat-
ed gene expression were significantly higher in African-American
TNBC tumors compared with tumors from European Americans
(60). Importantly, higher tumor vascularization in African-
American patients may consequently suggest potential
VEGFA/angiogenesis-related therapeutic options for this pop-
ulation (60). A similar study identified that breast tumors from
African-American women are more likely to present with TP53
mutations, less likely to be mutated at the PIK3CA locus, and
show greater tumor heterogeneity, a pattern consistent with the
aggressive behavior of tumors in African-Americans (61).
Research has also suggested that the presence of breast cancer
stem cells (as determined by ALDH1A1 expression) is also more
prevalent in tumors from women of African ancestry compared
with European/White-American populations (57–59).

The recent pan-TCGA cancer study of the immune landscape of
cancer identified relationships between ancestry and immune
response (70). CD274 (PD-L1) expression was lower in tumors
from African ancestral populations across most cancer types
including breast and colorectal cancers. Estimated lymphocyte
fractions were lower in Asian ancestry in uterine and bladder
cancers (UCEC, BLCA). On the basis of these findings, the authors
suggested the hypothesis that checkpoint inhibitors could dem-
onstrate ancestry-related efficacy (70).

Cellular Models in Cancer Research
In vitro cultures of immortalized cell lines isolated from

tumors have been used as model systems in cancer for at least
65 years. Cell lines have been developed from a variety of cancers
including lung (71, 72), breast (73, 74), and ovarian (75, 76)
cancer. The National Cancer Institute assembled a panel of
60 cell lines representing a number of cancers including leuke-
mia and many solid tumor types (non–small cell lung, colon,
ovarian, renal, prostate, breast, melanoma, CNS; refs. 77–79).
However, in the era of precision medicine, 60 cell lines repre-
sents only a small number of the over 100 histologies of
cancer (79). Some of the notable data panels include the
Genomics of Drug Sensitivity in Cancer (GDSC; ref. 80), the
Cancer Cell Line Encyclopedia (CCLE; ref. 81), the Catalogue of
Somatic Mutations in Cancer (COSMIC; refs. 82, 83), the Cancer
Therapeutic Response Portal (CTRP; ref. 84), and CMT1000 (see
Supplementary Table S1 for a detailed list; ref. 85). These efforts
have greatly expanded the number of cell line models and the
data on these models available for cancer research.

The development and availability of cell line panels was
driven by varied interests in the research community, govern-
mental agencies, and pharmaceutical companies predominant-
ly as a method for screening compounds for potential effica-
cy (86–88). At the very early stages of the drug development
pipeline, drug toxicity and efficacy can be quickly assessed in
collections of cell lines derived from various cancer types. The
NCI-60 panel of cell lines led to many innovations including
the measurements of compound activity (89), data analy-
tics (90–92), and screening automation (86, 93, 94). The broad
diversity of cell types in the NCI60 have led to large number
of compounds screened, approximately 150,000 in 2010 (95).

Cell line panel drug response has also been correlated using
the wealth of molecular profiling tools available such as
gene expression (96–99), genetics (85, 100–102), pro-
teomics (103–105), and others (92). In the Connectivity
Map (106), 164 small molecules were used to perturb MCF7
(breast cancer), HL60 (leukemia), SKMEL5 (melanoma) and
PC3 (prostate cancer). This was vastly expanded in (107)
to 19,811 compounds and 9 cell lines. Cell line panels have
also been used for radiotherapy modeling (108–111) and
metabolite profiling (112). In fact, cell line panels have been
used to compare the applicability of cell lines with
tumors (113–115).

Although cancer cell lines represent a valuable cancer
research model system, issues such as misidentification and
cross-contamination of cell lines (116–120) have been
reported. Moreover, cell lines represent immortalized cancer
cells and are often viewed skeptically as representing in vivo
tumor development (71, 114, 121–124). Recently, individual
cell line genetic drift was shown in the breast cancer cell line
MCF7 to result in highly disparate drug response in different
laboratory isolates (125). Finally, concerns over adequate
patient consent for creating cell lines have arisen most notably
from HeLa cells (126–130).

Leveraging Cell Line Models in Health
Disparities Research

While the NCI-60 provides a well-characterized resource of
cell line models, the personalized medicine era challenged the
paradigm of a single representative for an entire disease cate-
gory (131, 132). A broader representation of cancer was intro-
duced through larger cell line panels such as the CCLE,
although as we demonstrate large gaps still remain. Com-
pounding this under-representation in cell line models is the
lack of diversity in large molecular studies (28, 35). Thus, the
ability to adequately address precision medicine with respect to
genetic ancestry is severely limited.

When a scientist chooses a cell line model, considerations
should include the disease (e.g., breast cancer), molecular
classification (e.g., triple-negative breast cancer), and genetic
ancestry (e.g., ancestral components of a relevant population)
as well as on practical laboratory considerations. The under-
pinnings of cancer risk associated with different genomic loci in
GWAS follow-up studies requires researchers to identify cancer
as well as normal tissue cell lines that reflect the population in
which the association was identified. In addition, when drug
response correlations with molecular information are consid-
ered, the variable of estimated genetic ancestry should be
included. For the reasons described above, genetic ancestry can
impact the aggressiveness of disease (as prostate cancer in AA
men), type of disease (as TNBC breast cancer in Hispanic/
Latinos), or response to therapy. Thus, having accurate cell
line ancestry information available supports experimental con-
clusions relevant to the population studied but not necessarily
applicable to other populations. Furthermore, actively selecting
cell line models reflective of a study population allows for
directed conclusions and actions in this population from gene
perturbation (knock-down) functional studies or drug treat-
ment response/resistance experiments.

Several research studies have addressed these considerations.
For example, in ref. 133, the authors examined the ancestry of
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several commonly used prostate cancer cell lines (including
22Rv1, PC3, DU145). In a larger study, germline variants were
examined in 993 cell lines compared with 265 drugs for associa-
tions with drug response (134). While not explicitly examining
ancestry, this result clearly indicates that the genetic background
of cells can impact drug response.

Ancestral Composition of Cancer Cell Line
Models

We have identified a lack of research aids for determining
genetic diversity in existing cell line databases. As an aid to
cancer researchers and to support disparities studies, we have
estimated the genetic ancestral components in existing cell line
databases. First, we identify genetic ancestral populations that
do not currently have representative cell line models. Second,
we provide the admixture of genetic populations such that
representative models can be identified for populations being
studied. Future scientific studies can benefit from using this
information on admixture of estimated ancestry within the cell
line models when evaluating in vitro molecular biology end-
points and therapeutic responses. We also expect this resource
to guide future efforts to generate cell lines in specific cancers in
which disparities have been identified.

Using available genome-wide genotyping data (see Supple-
mental Material and Methods), we have determined the admix-
ture proportions of 1,393 cancer cell lines (Supplementary
Table S2) representing various cancer types (Supplementary
Table S3) from the COSMIC and CCLE cell line panels using
Admixture 1.3 (135). Excess genetic similarity was noted in 91
cell line pairs (Supplementary Table S4). Cell line single nucle-
otide polymorphism (SNP) data were combinedwith population
SNP data from The 1000 Genomes Project Consortium (1kG,
http://www.internationalgenome.org; ref. 24). This combined
dataset was filtered (709,034 single-nucleotide variants) and
visualized using t-Distributed Stochastic Neighbor Embedding
(t-SNE; Fig. 1A; ref. 136) and principal components analysis
(Fig. 1B). Cell lines and 1kG populations were grouped on the
basis of the Infomap approach of detecting community structure
from the adjacency graph of each sample's 30 nearest neighbors
(in Principal Component space; ref. 137). Cell line associations
were made based on most common 1kG population in the cor-
responding cluster: African (AFR), African American (AMR_AA),
East Asian (EAS), European (EUR), Hispanic/Latino (AMR_HL),
or South Asian (SAS). Admixture proportions for each cell line
are presented in Supplementary Table S5.

Comparing reported ethnicity to measured genetic ancestry
There is ample literature assessing the correspondence

between genetic ancestry and self-identified race and ethnicity.
While the former can be described and quantified through
molecular genetic analysis, one's perceived race and ethnicity
is influenced by subjective variables. This perception stems
from the complex interaction between physical characteristics
and sociocultural factors. For more than half of the cell
lines studied, self-reported ethnicity information could be
obtained from one of the commonly used cell line databases
Cellosaurus (138), COSMIC (139), Biosample (140), ATCC
(https://www.atcc.org), among others. In the remaining
46.3%, information regarding the ethnicity of the individual
from which it was derived could not be easily recovered. In

64 of the cell lines, the reported ethnicity did not correspond
to the ancestry as measured by genetic markers. Cell lines
reported as "African" or "Black" clustered with African-
American populations in 81.6% of the cases, emphasizing the
ambiguity of the existing nomenclature. In fact, the propor-
tion of the genome inferred to be of European origin in these
cell lines averaged 18.32% (ranging from 0% to 95.09%).
Another type of ambiguity concerns the cell line Hs 698.T
labeled as originating from an "American Indian," which
clusters with populations of South Asia, suggesting an origin
in India rather than from a Native/Indigenous American indi-
vidual. A total of 26 cell lines were reported as Caucasian
but clustered genetically with other populations includ-
ing African (n ¼ 2), African American (n ¼ 6), East Asian
(n ¼ 1), Hispanic/Latinos (n ¼ 16), and South Asian (n ¼ 1).
Interestingly, 89% of the cell lines identified as Hispanic/
Latino from admixture patterns and clustering are reported
as "Caucasian." Several groups have reported a concordance
between self- or observer-reported belonging to major racial/
ethnic groups (141–143). However, these categories do not
capture the inherent heterogeneity of admixed populations
(144–147). What appears as inconsistencies in self-report
and genetic data may result from individuals having limited
knowledge of their ancestral origins, or culturally identifying
to an ethnic group that is not representative of one's ad-
mixture proportions (18). Sociological, behavioral, and bio-
logical factors that underlie race, ethnicity, and ancestry are
likely to interact (148). Consequently, from a biomedical
research perspective, both self-reports of race/ethnicity
group as well as genetically determined clustering and admix-
ture are expected to be relevant in understanding disease
susceptibility, and ultimately, the causes of health dispari-
ties (18, 148, 149).

Distribution of genetic ancestry of cancer cell lines
Ancestry distribution of the cell lines is shown in Fig. 1C and

summarized in Supplementary Table S6. Across all cell lines,
there was a clear bias in the representation of ancestry, with the
majority of the cancer cell lines studied determined to be from
European and East Asian origin (62.46% and 29.18%, respec-
tively). All other reference populations were represented by less
than 10% of the cell lines, with cell lines from African origin
accounting for 5.26%, African American 0.86%, Hispanic/Latino
1.95% and South Asian 0.29%. These overall distributions were
similar for subsets of cell lines representing the COSMIC and
CCLE collections. However, the NCI60 panel stood out with
the majority of the cell lines originating from individuals of
European descent (over 94%).

Proportions of cell lines associated with ancestral groups
also varied across cancer types as detailed in Fig. 2 and Supple-
mentary Table S7. While breast and lung cancer cell lines have
the highest proportion of African descent cell lines (17.19%
and 19.83%, respectively), breast cancer had the lowest pro-
portion of cell lines of Asian origin (6.25%). Below we describe
several significant limitations by cancer types known to exhibit
disparities.

In prostate cancer, risk alleles at the 17q21 susceptibility locus
have been shown to be rare in European and Asian populations
but may contribute to up to 10% of the prostate cancer risk in
men of African descent (150). In a large multi-ethnic replication
study of prostate cancer risk GWAS hits, the magnitude of the
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association of known risk loci also varied substantially across
cohorts of different ethnicities (151). Novel signals unique to
men of African ancestry were recently identified on chromo-
somes 13q34 and 22q12, further supporting the contribution of
population-specific variants to prostate cancer risk (152). Recent
work indicates that beyond inherited risk variants, somatic
driver mutations also differ in the African population compared
with European-derived tumors (153). African-Americanmen are

diagnosed with prostate cancer at younger age, have different
treatment profiles, and have a higher risk of prostate cancer–
specific mortality even after adjusting for other factors (154).
Ten prostate cell lines (7 carcinoma, 1 hyperplasia, 2 normal) are
reported in CCLE and NCI60. Despite widely acknowledged
differences in the incidence and severity of prostate cancer in
men of African descent, African ancestral genetic factors are
represented in only 1 of 10 cell lines (Q7 > 5%). This single

© 2018 American Association for Cancer Research
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Figure 1.

Estimated genetic ancestry of cell lines within key cell line panels with the 1000 Genomes Project (1kG) reference populations. A, t-SNE plot of SNP
data for cell line panels and 1kG reference populations where each reference population is labeled with the 1kG label (see Supplementary Table S8 for
abbreviation definitions) and the cell lines are labeled as small purple circles primarily clustered in the JPT (Japan), GBR (Great Britain), and CEU
(Utah residents with Northern and Western European Ancestry) clusters, indicating the majority of cell lines are limited to a few major genetic
ancestral groups. B, Principal component analysis (PCA) plot of the cell line panels with the 1kG reference populations. C, Panel of t-SNE plots
showing specific estimated admixture component of ancestral populations estimated through an Admixture analysis with 1kG references and cell lines
(7 populations, Q1–Q7; see Supplementary Table S5 for Admixture proportions). Shown are samples with majority admixture (Q1–Q7 color) for the
specific population. Waterfall plots show the relative component fraction in each cell line and 1kG sample.
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cell line was MDAPCA2B, consisting of an estimated 90%
African component (Q7 ¼ 90% AFR/AMR-AA). Most cell lines
have majority European (Q1þQ6) ancestry component. Inter-
estingly, BPH-1, while reported as "Japanese," has a European
component of 95%, and an Asian component of 4%.

Cell lines of East Asian origin were the vast majority of
cancers of the stomach (86.05%). This might reflect the higher
incidence of these cancers in Asian populations. However, the

increased burden of gastric cancer in Latin America (155, 156)
suggests that better representation outside of East Asian origin
will be important.

Asian/Pacific Islanders men and women experience a 70%
and 95% higher incidence rate of liver cancer, respectively,
than European-American men and women. Hispanic men and
women have a similarly elevated incidence of liver can-
cers (157). Liver cancer cell lines appear to be more

© 2018 American Association for Cancer Research
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representative when considering Asian ancestry: of the 27 listed
cell lines, 16 have a reported ethnicity consistent with Asian
ancestry. However, we note that 1000 Genomes does not
include Pacific Islander populations, and so we are currently
unable to distinguish this ancestral component. Twenty-two
of the 27 cell lines have East Asian (Q3þQ4) components of
>80%. Two cell lines have African (Q7) components >70%.
However, only two cell lines have Native American (Q2)
components >5% (C3A, HEPG2).

Lung cancer is highly prevalent in Hispanic/Latino (HL)
men and women, and is the leading cause of cancer-related
death in HL men (158). Recent studies have shown a differ-
ence in mutation rates prevalence among common oncogenic
driver genes: EGFR is more highly mutated in Asian (159) and
HL (160, 161), whereas KRAS is more highly mutated in Non-
Hispanic Whites (NHW) (160). This difference may have a
direct impact on treatment and outcomes, as EGFR and KRAS
mutation status affects choice of treatment. Again, the major-
ity of 230 lung cancer cell lines (including adenocarcinoma,
squamous cell carcinoma, and small-cell carcinoma) have
majority European ancestry. Only four cell lines have Native
American (Q2) components >5% (COLO668: 16.6%,
HS618T: 21.6%, NCI-H716: 14.7%, NCI-H1435: 15.6%) and
75 cell lines have Asian ancestral components (Q3, Q4, Q5)
>5% and 31 cell lines have African ancestral components (Q7)
>5%.

Estimated Cell Line Ancestry
Using the estimated ancestry from the cell line panels and

the 1000 Genome populations (described above), we have
developed an online, interactive, and searchable web-based
tool that allows visualizing and exporting of publication-
quality figures for the estimated genetic ancestry and popu-
lation structure of cancer cell lines in relation to reference
populations of the 1000 Genomes Project. For all samples, the
contribution of each inferred ancestral population to the
genome is quantified and available via tooltips. The tool can
be accessed at http://ecla.moffitt.org/.

The application visualizes a t-Distributed Stochastic Neigh-
bor Embedding (t-SNE; ref. 136) plot (Fig. 1) of the genotype
data for both the 1kG populations and the cell lines. A mouse-
over tooltip provides detailed information on the sample. For
all samples, the sample name is indicated as well as Q1–Q7
admixture proportions. The 1kG population sample detail
includes the population and super-population codes. The cell
line detail includes whether it is in CCLE and/or COSMIC, as
well as the reported tissue type. The reported ethnicity of the
cell line is also included (or NA if not available). All available
annotation information on the cell lines and 1kG reference
samples are present in table form in the "Table: Cell Line" or
"Table: Ref" tabs of the application.

The 1kG clusters can be visually annotated by 1kG population
or 1kG super-population. Cell lines are not assigned to clusters by
default but are indicated by small, purple circles. Several options
exist to categorize cell lines. Cell lines can be annotated by the
reported ethnicity from the cell line panel (although a large
proportion are missing ethnicity annotation); by admixture score
(Q1–Q7); or from cluster association using a graph-based clus-
tering approach. The graph-based clustering approach, Info-
map (137), is used to detect community structure from the

adjacency graph of each sample's 30 nearest neighbors (in Prin-
cipal Component space).

Search functionality is built into the application so that a cell
line [e.g., A-549) or all cell lines ("cell") can be highlighted.
Reference 1kG populations and super-populations (e.g., MXL)
can also be searched and highlighted. This functionality allows
a researcher to quickly identify the estimated genetic ancestry of
the cell line being considered, with respect to reference 1kG
populations. The tool also allows searching and highlighting
of cell lines by the "Reported Ethnicity" terms or by cell line
tissues of origin.

Additional views in this tool include the two-dimensional
principal components (PCA) plot with the same functionality
as the t-SNE clustering. Side-by-side plots of t-SNE and PCA can
also be selected to visualize particular populations or cell lines
in both visualizations simultaneously. Given the complexity of
the data being represented, a three-dimensional t-SNE cluster-
ing is also available interactively so that the view can be rotated
in three dimensions to see additional structure. Finally, the
t-SNE plot can be annotated with the admixture memberships
(Q1–Q7) as a further method of exploring additional structure
in this clustering.

This tool enables a researcher to explore the CCLE and
COSMIC cell line panels with respect to 1kG reference popula-
tions. A researcher can use this tool to select cancer cell lines for
study that better represent the population under examination.
Furthermore, when researchers perform drug cancer screenings
or mechanistic studies, the effect of genetic ancestry can be
considered in the analysis. Further descriptions of the tool and
methods for generating the data are available in Supplementary
Data and Methods.

Concluding Remarks
In summary, we identify an important gap in our knowl-

edge and understanding of genetic-based disparities within
cancer research. Most cancer studies have not systematically
taken into consideration the ancestry composition in the cell
lines used to model the disease in vitro. To mitigate this
problem we present an interactive tool that allows the inves-
tigation of specific global ancestry in cell line models. We
expect this resource to allow a direct examination of ancestry
in cell line models and to direct efforts to redress the under-
representation in cancer types with clear disparities. Incorpo-
rating estimated genetic ancestry within cell line molecular
biology and drug discovery studies can significantly improve
the rigor and reproducibility of cancer research activities, not
just those explicitly examining the role of genetic ancestry in
cancer biology.
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