Jaqpot - An open-source web platform for creating, using, testing and sharing predictive models in nano-informatics

Haralambos (Harry) Sarimveis Professor School of Chemical Engineering National Technical University of Athens, Greece E-mail: <u>hsarimv@central.ntua.gr</u> <u>https://www.chemeng.ntua.gr/labs/control_lab/sarimveis.html</u>

Nanotechnology Working Group (Nano WG), June 20, 2019

Unit of Process Control and Informatics

- 1 Professor, 2 senior researchers, 3 post-docs, 6 Ph.D. students, 3 software engineers, many graduate and undergraduate students.
- Research Interests: mathematical modelling, data-driven methods, machine learning, computational intelligence, mathematical programming
- Applications: process control, production optimization, modelling in the chemical industry, **cheminformatics**, **nanoinformatics**

Outline

- 1. Development of Jaqpot
- 2. Technical Specifications
- 3. Predictive nanoQSAR modelling
- 4. Data management
- 5. Biokinetics PBPK modelling
- 6. Image Processing
- 7. Other Jaqpot functionalities
- 8. Conclusions

Jaqpot at a glance

Jaqpot is a user-friendly web-based e-infrastructure containing many data analysis and modelling microservices integrated under a common API.

The Jaqpot infrastructure allows for:

- Preprocessing data
- Computing descriptors from raw data (such as electronic images)
- Creating, validating, storing and sharing datasets and predictive statistical and machine learning models
- Generating reports in standard formats.

Developent of Jaqpot

NATIONAL TECHNICAL UNIVERSITY OF ATHENS

- Original development during the OpenTox project (2008—2011) OpenTox
- Main modelling tool in the eNanoMapper project (2014-2017)
- Part of the OpenRiskNet open e-infrastructure (2017-2019)
- Major Component of the NanoCommons community framework and infrastructure (2018-2021)
- Provides infrastructure and modelling tools to the NanoSolveIT e-platform (2019-2023)

OpenRiskNet RISK ASSESSMENT E-INFRASTRUCTURE

Application Programming Interfaces (Swagger Documentation)

H Jaqpot API https://api.jagpot.org/jagpot/services/swagger.json eyJhbGciOiJSUzI1NilsInR5cCk Explore

→ C' ŵ

Jagpot API

Jagpot v4 (Quattro) is the 4th version of a YAQP, a RESTful web platform which can be used to train machine learning models and use them to obtain toxicological predictions for given chemical compounds or engineered nano materials. Jagpot v4 has integrated read-across, optimal experimental design, interlaboratory comparison, biokinetics and dose response modelling functionalities. The project is developed in Java8 and JEE7 by the Unit of Process Control and Informatics in the School of Chemical Engineering at the National Technical University of Athens.

Created by Charalampos Chomenidis, Pantelis Sopasakis, Evangelia Anagnostopoulou, Angelos Valsamis, George Drakakis, Pantelis Karatzas, Georgia Tsiliá, Philip Doganis, Haralambos Sarinveis See more at <u>Hints //dithub.com/kinkiybeising/apod-weblissues</u>

Contact the developer		🖲 Jaqpot	API
discussion	Show/Hide List Operati	$\epsilon \leftrightarrow \epsilon$	G
descriptor	Show/Hide List Operation	0	
pmml	Show/Hide List Operati		
feature	Show/Hide List Operati		
readacross	Show/Hide List Operation		
doseresponse	Show/Hide List Operation	0	
validation	Show/Hide List Operation	0	
notification	Show/Hide List Operation		
swaggerld	Show/Hide List Operation		
report	Show/Hide List Operation		
enm	Show/Hide List Operation		
model	Show/Hide List Operation	0	
dataset	Show/Hide List Operation		
biokinetics	Show/Hide List Operation		
openrisknet	Show/Hide List Operation		
organization	Show/Hide List Operation		
user	Show/Hide List Operation		
interlab	Show/Hide List Operation		
bibtex	Show/Hide List Operation		
task	Show/Hide List Operation		
aa	Show/Hide List Operation		
algorithm	Show/Hide List Operation	D	

[BASE URL: /jaqpot/services , API VERSION: 4.0.3]

_	Swegger UI X 🚯 JSON-LD Playgron X 🔵 e-Infrastructure - X 🔮 Welcome - New: X 🔯 JSON Web Token: X localhost2000/jsqpot: X localhost2000/jsqpot: X		
	st8080/jappot/swagger3/ SPONSE	··· 🖂 🕁	lii\ 🖸 📽 🤞
POST	//services/doseresponse Creates Dose Response Report		
enm		~	
GET	/services/enm/property/categories Retrieves property categories	a	
GET	/services/emm/descriptor/categories Retrieves descriptor calculation categories	a	
POST	/services/emm/dataset Creates Dataset By Study		
feature		~	
GET	/services/feature/(id) Finds Feature by ID	a	
PUT	/services/feature/(id) Places a new Feature at a particular URI	a	
DELETE	/services/feature/{id} Deletes a particular Feature resource.		
GET	/services/feature Lists features		
POST	/services/feature Creates a new Feature		
interla	2	~	
POST	/services/interlab/test Creates Interlab Testing Report	a	
model		~	
PUT	/services/model/(id)/meta Updates meta info of a dataset	a	
GET	/services/model/{id} Finds Model by Id	Act u ate Wind	
POST	/services/model/{id} Creates Prediction	a	

Infrastructure

Docker is used to run software packages called "containers". Containers are isolated from each other and bundle their own application, tools, libraries and configuration files;

An open-source system for automating deployment, scaling, and management of containerized applications

OpenShift is a multifaceted, open source container application platform from Red Hat Inc. for the development, deployment and management of applications.

An open source software product to allow OpenID Connect single sign-on with Identity Management and Access Management aimed at modern applications and services.

OPENSHIFT

nanoQSA(P)R

The development of a **mathematical relationship** y=f(X), that predicts an end-point (property, toxicity index) as a function of one or more descriptors (phys-chem properties, computational descriptors, image descriptors, omics data)

OECD principles:

- 1. A defined end-point
- 2. The use of an **unambiguous algorithm**
- 3. A defined domain of applicability
- 4. Appropriate measures of goodness-of-fit, robustness and predictive ability
- 5. A mechanistic interpretation, if possible

Reporting formats developed by Joint Research Center (JRC):

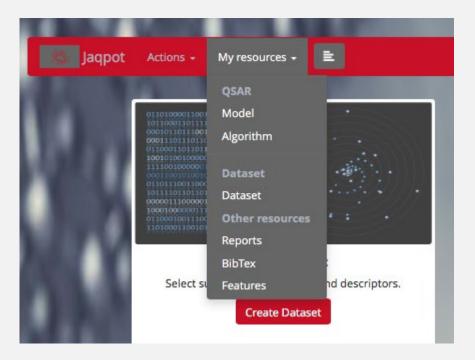
QSAR Model Reporting Format (QMRF) QSAR Prediction Reporting Format (QPRF)

Guidance Document on the Validation of (Quantitative) Structure-Activity Relationship [(Q)SAR] Models; OECD SERIES ON TESTING AND ASSESSMENT. (OECD, 2007), ENV/JM/MONO(2007)2

NATIONAL TECHNICAL UNIVERSITY OF ATHENS

Jaqpot 4 http://www.jaqpot.org/

Chomenidis C, Drakakis, G, Tsiliki G, Anagnostopoulou E, Valsamis A, Doganis P, Sopasakis P, Sarimveis, H, (2017) Jaqpot Quattro: A Novel Computational Web Platform for Modeling and Analysis in Nanoinformatics, Journal of Chemical Information and Modeling, 57(9), 2161-2172.



Create new account

ENANOMA	PPER JAQPO	т	
L	.og In		
Username or email		\neg 7	
Password			
Remember me	Forgot I	Password?	
	Log In		
New u	ser? Register	\sim	
TL	-1		

My resources

Algorithms

And the second	
Regression	Classification
MLR - Weka (multi-response linear regression implemented in Java-WEKA)	SVM - Weka (LibSVM) Implementation
WM - Weka (LibSVM, Support vector machines implemented in Java-WEKA)	ld3 - with MCI (Implemented in Python-Scikit-Learn)
PLS - Weka (Partial Least Squares implemented in Java-WEKA)	ID3 Decision Tree (Implemented in Python-Scikit Learn)
inear Regression (Implemented in Python-Scikit Learn)	CMI Decision Tree (Implemented in Python-Scikit Learn)
asso Regression (Implemented in Python-Scikit Learn)	Generalised Naive Bayes (Implemented in Python-Scikit Learn)
PLS - with VIP scores (Implemented in Python)	Multinomial Naive Bayes (Implemented in Python-Scikit Learn)
Readacross	Bernoulli Naive Bayes (Implemented in Python-Scikit Learn)
inear Model (implemented in R - base library)	Random Forest (Implemented in Python-Scikit Learn)
radient Boosting (Implemented in Python-Scikit Learn)	Multi-layer Perceptron (Implemented in Python-Scikit Learn)
andom Forest (Implemented in Python-Scikit Learn)	Gradient Boosting (Implemented in Python-Scikit Learn)
Multi-layer Perceptron (Implemented in Python-Scikit Learn)	
	Previous 1 Next
Previous 1 Next	
Previous 1 Nex:	MANA
Previous 1 Next	MMMAA
Previous 1 Next	

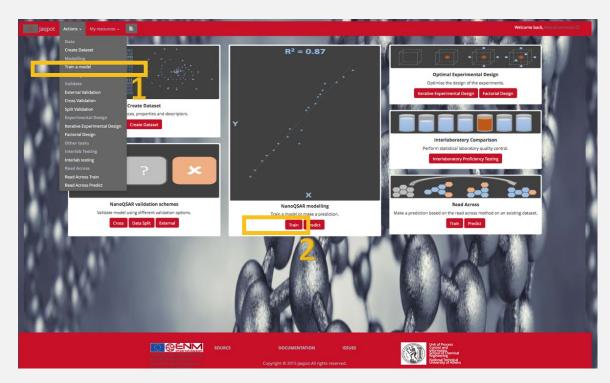
Ontological annotation of algorithms

	Category / URI	Description	OpenTox Ontological Classes
	Preparation-additional		
			"ot:Algorithm",
			"ot:Scaling",
1	http://jaqpot.org:8080/jaqpot/services/algorithm/scaling	Scaling	"ot:Transformation"
	WEKA (Java)		
			"ot:Algorithm",
		MLR - Weka (multi-response linear regression	"ot:Regression",
1	http://jaqpot.org:8080/jaqpot/services/algorithm/weka-mlr	implemented in Java-WEKA)	"ot:SupervisedLearning"
	Python		
			"ot:Algorithm",
	http://jaqpot.org:8080/jaqpot/services/algorithm/python-id3-		"ot:Classification",
		Id3 - with MCI (Implemented in Python-Scikit-Learn)	"ot:SupervisedLearning"

OpenTox Algorithm Ontology http://old.opentox.org/data/documents/development/RDF%20files/AlgorithmTypes

Model training

Example


Modelling the Solubility of C60 fullerene in various solvents (Gharageizi et.al., 2008).

The full dataset of 124 solvents has been uploaded to Jaqpot and can be viewed in the URI <u>http://www.jaqpot.org/data_detail?name=nGF3G5</u> <u>SBo4wk5h</u>

Training dataset of 93 solvents

http://www.jaqpot.org/data_detail?name=XmCQVC 7o5jKKRv)


Test dataset of 31 solvents (http://www.jaqpot.org/data_detail?name=3UbgEJ PIdT2Ovs)

Farhad Gharagheizi & Reza Fareghi Alamdari (2008) A Molecular-Based Model for Prediction of Solubility of C60 Fullerene in Various Solvents, Fullerenes, Nanotubes, and Carbon Nonstructures, 16:1, 40-57, DOI: 10.1080/15363830701779315

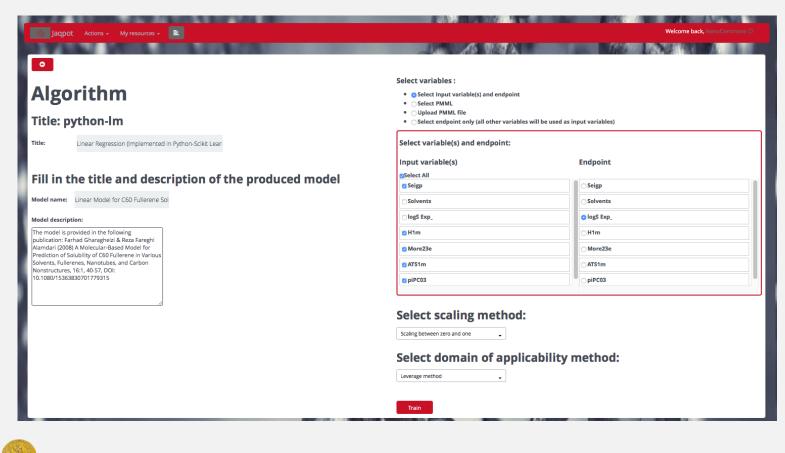
Model training - Dataset selection

Example datasets:

Martin			Summer -
Gajewicz_10_29	Gajewicz et al - 10 Metal Oxide NPs	10 MeOx NPs with 29 descriptors, used for predicting HaCaT toxicity.	2018-07-05T15:05:49.675+0000
Gajewicz_10_29_class	Gajewicz et al - 10 Metal Oxide NPs	10 MeOx NPs with 29 descriptors, used for predicting HaCaT toxicity.	2018-07-05T15:05:49.959+0000
Gajewicz_18_29	Gajewicz et al - 18 Metal Oxide NPs	18 MeOx NPs with 29 descriptors, used for predicting HaCaT toxicity.	2018-07-05T15:05:50.083+0000
Gajewicz_18_29_class	Gajewicz et al - 18 Metal Oxide NPs	18 MeOx NPs with 29 descriptors, used for predicting HaCaT toxicity.	2018-07-05T15:05:50.192+0000
Gajewicz_8_29	Gajewicz et al - 8 Metal Oxide NPs	8 MeOx NPs with 29 descriptors, used for predicting HaCaT toxicity.	2018-07-05T15:05:50.237+0000
Gajewicz_8_29_class	Gajewicz et al - 8 Metal Oxide NPs	8 MeOx NPs with 29 descriptors, used for predicting HaCaT toxicity.	2018-07-05T15:05:50.277+0000

All Datasets:

l	Polarinai (
	XmCQVC7o5jKKRv	Solubility of C60 fullerene in various solvents (training	. The dataset includes 5 descriptors and solubility (log of molar fractions) for 93 solvents	2019-05-14T11:11:03.244+0000
ľ	nGF3G55Bo4wk5h	Solubility of C60 fullerene in various solvents	The dataset includes 5 descriptors and solubility (log of molar fractions) for 124 solvents	2019-05-14T11:09:50.746+0000
l.	SUfmS4t4LoBREREdx5cp	Gharagheizi et al, Fullerene C60	Numerical values of the calculated descriptors along with solubility of C60 in solvents	2019-05-14T10:52:15.395+0000
	MXw9XCtFfl3F2x	new dataset		2019-05-14T10:14:41.460+0000
	xIYt2DN1NUct2G	Kar et al, metal oxides (training), mod_7	Numerical values of the calculated descriptors along with cytotoxicity values for metal oxidenanoparticles	2019-05-14T09:23:38.585+0000
	FZxgQrEp2RBSWN	Marcus et al, Fullerene C60, all solvents, 298_303	Fullerene C60 Solubility (all solvents)	2019-05-06T11:02:02.822+0000
	mZjbdhgfh107oi	Pathakoti et al, metal oxides, light (training)	Molecular properties of metal oxides	2019-05-06T08:49:42.616+0000
	4xoqetJXfkMB0S	Pathakoti et al, metal oxides, light (full)	Molecular properties of metal oxides	2019-05-06T08:49:13.215+0000
w ia	r2Chi6fGaaHCrS gpot.org/dataset?dataset=XmCQVC7o5jKKRv	Pathakoti et al, metal oxides, dark (training)	Molecular properties of metal oxides	2019-05-06T08:48:55.173+0000
m.ja	approrg/dataset/dataset=xillo@vo/objitititiv			



Model training - Choice of algorithm

•	
 Train model	
Choose Algorithm	
Regression	Classification
MLR - Weka (multi-response linear regression implemented in Java-WEKA)	SVM - Weka (LibSVM) Implementation
SVM - Weka (LibSVM, Support vector machines implemented in Java-WEKA)	Old3 - with MCI (Implemented in Python-Scikit-Learn)
PLS - Weka (Partial Least Squares implemented in Java-WEKA)	OID3 Decision Tree (Implemented in Python-Scikit Learn)
Linear Regression (Implemented in Python-Scikit Learn)	OCMI Decision Tree (Implemented in Python-Scikit Learn)
Lasso Regression (Implemented in Python-Scikit Learn)	Generalised Naive Bayes (Implemented in Python-Scikit Learn)
PLS - with VIP scores (Implemented in Python)	OMultinomial Naive Bayes (Implemented in Python-Scikit Learn)
Readacross	Bernoulli Naive Bayes (Implemented in Python-Scikit Learn)
Linear Model (implemented in R - base library)	Random Forest (Implemented in Python-Scikit Learn)
Gradient Boosting (Implemented in Python-Scikit Learn)	OMulti-layer Perceptron (Implemented in Python-Scikit Learn)
Random Forest (Implemented in Python-Scikit Learn)	Gradient Boosting (Implemented in Python-Scikit Learn)
Multi-layer Perceptron (Implemented in Python-Scikit Learn)	
	Previous 1 Next

NATIONAL TECHNICAL UNIVERSITY OF ATHENS

Model training – Variable and parameters selection

Task management

	A REAL PROPERTY AND		
Jaqpot	Actions - My resources -		Welcome back, NanaCommons 🔿
	MARK 1 71	Martin State and a state of the	State of the state
Task:	Training on algorithm:	python-Im #nsyGZP98gp2n	
Status:	COMPLETED		
Туре:	TRAINING		
Date:	05/14/19		
Result:	See result		
Description:			
Training t	task using algorithm python-lm		
0			

Model webpage

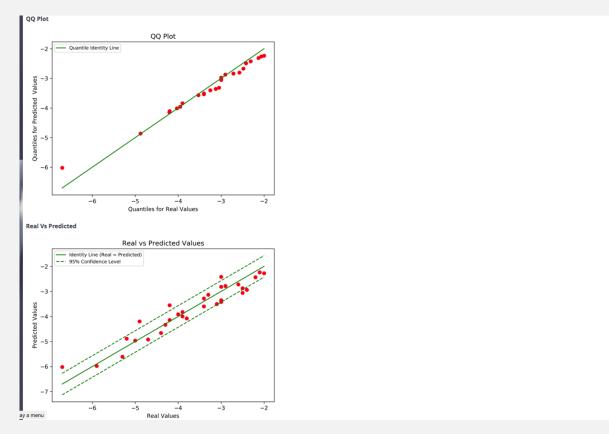
URI of model: <u>http://www.jaqpot.org/m_detail?name=72GEEmGhhavY00n7O209</u>

lagpot Ad	tions - My resources -				Welcome ba	c k, NanoCommons ()
Tredhor		18 W.ST &	-	0.000		
Model	● #72GEEmGhhavY00n7O209		✓ Validate me	► Predict	O Delete	
Title:	Linear Model for C60 Fullerene Solubility					
Description:						
	The model is provided in the following publication: Farhad Gharagheizi & Reza Fareghi Alamdari (2008) A MolecularåBased Model for Prediction of Solubility of C60 Fullerene in Various Solvents, Fullerenes, Nanotubes, and Carbon Nonstructures, 16:1, 40-57, DOI: 10.1080/15363830701779315					
Transformations	http://jaqpot.org:8080/jaqpot/services/model/FqeE4mX2AC1hnXgVeUBr		http://jaqpot.org:8080	/jaqpot/services/n	nodel/4tObJaWKrfls	5eljTkHy
Doa:	http://jaqpot.org/8080/jaqpot/services/model/3id3kU4efV04Ru9puuKo					
Algorithm:						
python-lm						
Features:						
Required Features						
Dependent Features						
Independent Feature	15					
Predicted Features						
Representation:						
PMML	AT SAME TO THE REPORT OF	-	COMPANY MAY	an canonai		

External validation of models

12	Jaqpot Actions - My reso	urces +				Welcome back, NanoCommo	ons O
	I MARKET	Long the second s	T. N. MARKED STREET, ST.			NARRAN AND AND AND AND	
•							
Cł	noose met	hod:					
	10000 11100						
Selec	rt dataset						
	ct dataset. t values.						
		ATS1m	Seigp	More23e	H1m	logS Exp_	
nsert	t values.	ATS1m	Seigp 0,578	More23e	H1m 0,927	logS Exp_	0
Insert	t values. piPC03	- Andrews					0
Insert 1 2	piPC03	2,473	0,578	0,025	0,927	-4	0
Insert 1 2 3	piPC03 1,609 1,609	2,473 1,763	0,578	0,025 0,022	0,927 0,328	-4 -5,3	8




http://www.jaqpot.org/report?name=cnJlt1LZ3fnvlcl

Jaqpet Adviors My resources Response Finite External validation report Model: 72GEEmGhhavY00n70209 Image: Comparison of the standard stand
Title: External validation report Modei: 72GEEmGhhav/00n70209 Dataset: XmCQVC7o5jKKRv Dataset: XmCQVC7o5jKKRv Deternal validation with modeihttp://jaqpot.org.8080/jaqpot/services/modei/72GEEmGhhav/00n70209 and datasethttp://jaqpot.org.8080/jaqpot/services/datasethtp://jaqpot.org.8080/jaqpot/services/datasethtp://jaqpot.org.8080/jaqpot/services/datasethtp://jaqpot.org.8080/jaqpot/services/datasethtp://jaqpot.org.8080/jaqpot/services/datasethtp://jaqpot.org.8080/jaqpot/services/datasethtp://jaqpot.org.8080/jaqpot/services/datasethtp://jaqpot.org.8080/jaqpot.services/datasethtp://jaqpot.org.8080/jaqpot.services/datasethtp://jaqpot.org.8080/jaqpot.services/datasethtp://jaqpot.org.8080/jaqpot.services/datasethtp://jaqpot.org.8080/jaqpot.services/datasethtp://jaqpot.org.8080/jaqpot.services/datasethtp://jaqpot.org.8080/jaqpot.services/datasethtp://jaqpot.org.8080/jaqpot.services/datasethtp://jaqpot.se
Title: External validation report Model: 72GEEmGhhaw000n70209 Dataset: XmCQVC705jKKRv 2 Description: 2 External validation with model:http://jaquot.org/8080/jaqpot/services/model/72GEEmGhhav000n70209 and dataset:http://jaquot.org/8080/jaqpot/services/dataset/XEC/QVC705jKKRv FValue: 247.42 2 Number of predictor variables: 5 2 RxSD: 0.34 2 Rv2 (OECD): 0.9 2 StdError: 0.35 2 At Data 2 Variables: 0.35 2 StdError: 0.35 2 Model: 5 2 StdError: 0.35 3 StdError: 0.35 3 StdError: 5 3
Title: External validation report Title: Title: External validation report Totaset: Title: Title: Totaset: XmcQvCro5jKKRv Image: Comparison of the state of th
Title: External validation report Model: 72GEEmGhhav/00n70209 Dataset: XmCQVC705jKKRv Description: External validation with model:http://jagoot.org.8080/jagoot/services/model/72GEEmGhhav/00n70209 and dataset:http://jagoot.org.8080/jagoot/services/dataset/fagoot/services/model/72GEEmGhhav/00n70209 and dataset:http://jagoot.org.8080/jagoot/services/dataset/fagoot/services/fagoot/services/dataset/fagoot/services/fagoo
Model: 72GEEmGhhav00070209 Dataset: XmCQVC7o5/KKRv Description: External validation with model:http://jaquot.org/8080/jaquot/services/model/72GEEmGhhav00070209 and datasethttp://jaquot.org/8080/jaquot/services/dataset/CMCV7o5/KK8v Augorithm Type: REGRESSION Augorithm Type: 0.34 F-Value: 0.34 Stefror: 0.35 StdError: 0.35 Augorithm Type: 0.35 XmSD: 0.35
Dataset: XmCQVC705jKKRV Description: External validation with model:http://jaqpot.org.8080/jaqpot/services/model/72GEEm.GhhavY00n70209 and dataset:http://jaqpot.org.8080/jaqpot/services/dataset/XmCQVC705jKKRV Algorithm Type: REGRESSION Algorithm Variables: 5 FValue: 247.42 Number of variables: 5 StdError: 0.34 0.9 2 StdError: 0.35 Algoritable: 0.9 StdError: 0.35 MID ata 2
Pescription: External validation with model:http://jaqpot.org/8080/jaqpot/services/dataset/KmCQVC7o5jKKRv Agorithm Type: REGRESSION F-Value: 247.42 Number of predictor variables: 5 RMSD: 0.34 R42 (OECD): 0.9 0.9 2 R*2 Adjusted (if applicable): 0.9 StdError: 0.35 MID tat
Description: External validation with model:http://jaqpot.org.8080/jaqpot/services/model/72GEEm.GhhavV00n70209 and datasethtp://jaqpot.org.8080/jaqpot/services/datasetX/MCQVC705jKKkv Agorithm Type: REGRESSION I F-Value: 247.42 I Number of predictor variables: 5 I RMSD: 0.34 I RV2 (OECD): 0.9 I StdError: 0.35 I All Data 5 I
External validation with modelshttp://jaqpot.org.8080/jaqpot/services/model/72GEEmGhhavV00n70209 and datasethtp://jaqpot.org.8080/jaqpot/services/dataset/XmCQVC705jKKRv Algorithm Type: REGRESSION I F-Value: 247.42 I Store 0.34 I Rv2 (OECD): 0.9 I StdError: 0.35 I RtD 0.35 I StdError: 0.35 I StdError: 0.35 I
Read Predicted CI 0.35 All Data Predicted
Algorithm Type: REGRESSION I F-Value: 247.42 I Number of predictor variables: 5 I RMSD: 0.34 I R42 (OECD): 0.9 I R52 dijusted (if applicable): 0.9 I StdError: 0.35 I The distance I I StdError: 0.35 I StdError: 0.35 I
Algorithm Type: REGRESSION I F-Value: 247.42 I Number of predictor predictor redictor I I RMSD: 0.34 I R*2 (OECD): 0.9 I R*2 Adjusted (if applicable): 0.9 I StdError: 0.35 I Torvi 1 5.849782807 rovi 0 I rovi 0 3.5 3.65218379328
Type: REGRESSION F-Value: 247.42 Number of predictor variables: 5 RMSD: 0.34 RASD: 0.9 R*2 Adjusted (if applicable): 0.9 StdError: 0.35 RED: 0.35
Number of predictor variables: 5 2 RMSD: 0.34 2 R*2 (OECD): 0.9 2 R*2 Adjusted (if applicable): 0.9 2 StdError: 0.35 2 StdI Data 2 rov1 6.1 5.849782807 rov10
Number of predictor variables: 5 RMSD: 0.34 R*2 (OECD): 0.9 R*2 Adjusted (if applicable): 0 StdError: 0.35 All Data Real Predicted rov1 5. 3.65218379323
variables: 5 2 RMSD: 0.34 2 R^2 (OECD): 0.9 2 R^2 Adjusted (ff applicable): 0.9 2 StdError: 0.35 2 All Data 2 2 row1 -6.1 -5.849782807 row10 3.5
RMSD: 0.34 R*2 (OECD): 0.9 R*2 Adjusted (if applicable): 0.9 StdError: 0.35 StdError: 0.35
R^2 (OECD): 0.9 R^2 Ajusted (if applicable): 0.9 StdError: 0.35 All Data Real Predicted row1 row1 -6.1 -5.849782807 row10 row10 -3.5
R*2 Adjusted (if applicable): 0.9 StdError: 0.35 StdData Image: Comparison of the state of th
(if applicable): 0.9 StdError: 0.35 All Data Real Predicted row1 6.1 -5.849782807 row10 -3.5 -3.55218379323
Real Predicted row1 -6.1 -5.849782807 row10 -3.5 -3.65218379323
All Data Real Predicted row1 -6.1 -5.849782807 row10 -3.5 - 3.65218379323
Real Predicted row1 -6.1 -5.849782807 row10 -3.5 -3.65218379323
Real Predicted row1 6.1 -5.849782807 row10 -3.5 -3.65218379323
row1 4.1 5.849782807 row10 3.5 3.65218379323
row10 -3.5 -3.65218379323
row100 -2.2 -2.43446757404
row101 -2.1 -2.23685926686

NATIONAL TECHNICAL UNIVERSITY OF ATHENS

	Real	Predicted
compound1	-4	-3.91355789467
compound10	-2.6	-2.72064673994
compound11	-4.9	-4.19945022239
compound12	-5	-4.96443038285
compound13	-2.1	-2.23685926686
compound14	-3	-3.34976177746
compound15	-2	-2.27234329025
compound16	-3.9	-3.82107851451
compound17	-5.2	-4.88772442914
compound18	-4.2	-3.5504783112
compound19	-6.7	-6.01794584696
compound2	-5.3	-5.61018322885
compound20	-4.3	-4.33212597512
compound21	-2.5	-3.05827270109
compound22	-3.3	-3.13183407097
compound23	-2.4	-2.93903145294
compound24	-3.8	-4.07882245078
compound25	-3	-2.81223578464
compound26	-4.4	-4.65814301486
compound27	-4.7	-4.91962777437
compound28	-2.5	-2.87194521299
compound29	-3.9	-3.99928281415
compound3	-3.4	-3.28038430934
compound30	-2.2	-2.43446757404
compound31	-3	-3.41838538257
compound4	-5.9	-5.97659581681
compound5	-4.2	-4.14080958734
compound6	-3.1	-3.5059080608
compound7	-2.9	-2.78268289953
compound8	-3.4	-3.59838096199
compound9	-3	-2.41555106252

The report is downloadable as PDF

This report has been automatically created by the JagpotQuatro report service. Click here to navigate to our official webpage

External validation report

Description: [External validation with model: http://jaqpot.org:8080/jaqpot/services/model/72GEEmGhhavY00n7O209 and dataset: http://jaqpot.org:8080/jaqpot/services/dataset/XmCQVC7o5jKKRv]

Model: 72GEEmGhhavY00n7O209

Dataset: XmCQVC7o5jKKRv

Algorithm Type: REGRESSION

F-Value: 247.42

Number of predictor variables: 5

RMSD: 0.34

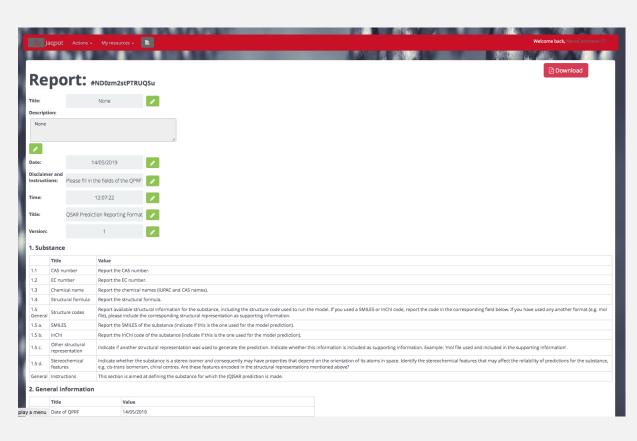
R^2 (OECD): 0.9

R^2 Adjusted (if applicable): 0.9

StdError: 0.35

Page 1 of 7

Model predictions


Jaqpot Actions -	Ny resources -			Welcome back, NanoCommons O		
Tompounds	 wight/pages.org/0/00/pages/sectional/section/backsoid, togl 	Jogs, Newsellingth Is pendicinal	🖕 Толентарь Юхик	Search:		
compound1	-3.91355789467		0.773992431967	QPRF Report		
compound10	-2.72064673994		0.0	QPRF Report		
compound11	-4.19945022239		0.888627058324	QPRF Report		
compound12	-4.96443038285		0.777042094673	QPRF Report		
compound13	-2.23685926686		0.6621450773	QPRF Report		
compound14	-3.34976177746		0.711925639616	QPRF Report		
compound15	-2.27234329025		0.711817089278	QPRF Report		
compound16	-3.82107851451		0.804959215087	QPRF Report		
compound17	-4.88772442914		0.417776767401	QPRF Report		
compound18	-3.5504783112		0.791656797678	QPRF Report		
compound19	-6.01794584696		0.149905815801	QPRF Report		
compound2	-5.61018322885		0.646657429976	QPRF Report		
compound20	-4.33212597512		0.524281783472	QPRF Report		
compound3	-3.28038430934		0.754141037754	QPRF Report		
compound4	-5.97659581681		0.783928066526	QPRF Report		
compoundS	-4.14080958734		0.468725564498	QPRF Report		
compound6	-3.5059080608		0.644248422328	QPRF Report		

QPRF report

The QPRF (QSAR prediction reporting format) report generated by Jaqpot contains all the fields required by the OECD guidelines, namely:

- Substance
 - Contains information such as CAS and EC numbers, SMILES, InChi, etc.
- General
 - Information such as date and creator name and email.
- Prediction
 - Biological endpoint, variables, model used, DoA, etc
- Adequacy
 - Optional field, containing regulatory purpose, conclusion etc

QPRF report

PCA of Query instance vs. Training Dataset **Original Values QPRF** Query Values ٠ **3D** Projection of Datapoints Principal Component 0.6 0.4 0.2 0.0 -0.2 3rd -0.4-0.6 -0.6_0.4_0.2 0.0 0.2 0.4 Ist Principal Component 0.6

QPRF report

The report is downloadable as PDF

This report has been automatically created by the JagpotQuatro report service. Click here to navigate to our official webpage

Report

Description: [null]

Date: 14/05/2019

Disclaimer and instructions: Please fill in the fields of the QPRF with information about the prediction and the substance for which the prediction is made. The information that you provide will be used to facilitate considerations on the adequacy of the prediction (model result) in relation to a defined regulatory purpose. The adequacy of a prediction depends on the following conditions: a) the (Q)SAR model is scientifically valid: the scientific validity is established according to the OECD principles for (Q)SAR validation; b) the (Q)SAR model is applicable to the query chemical: a (Q)SAR is applicable if the query chemical falls within the defined applicability domain of the model; c) the (Q)SAR result is reliable: a valid (Q)SAR that is applied to a chemical falling within its applicability domain provides a reliable result; d) the (Q)SAR model is relevant for the regulatory purpose: the predicted endpoint can be used directly or following an extrapolation, possibly in combination with other information, for a particular regulatory purpose. A (Q)SAR prediction (model result) may be considered adequate if it is reliable and relevant, and depending on the totality of information available in a weight-of-evidence assessment (see Section 4 of the QPRF).

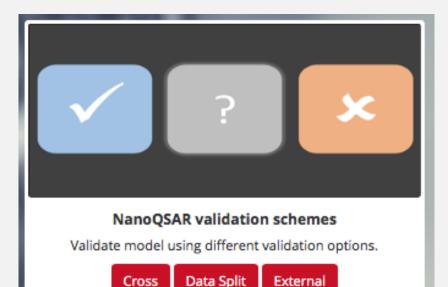
Time: 12:07:22

Title: QSAR Prediction Reporting Format (QPRF)

Version: 1

Procedure completed on: Tue May 14 12:07:22 UTC 2019

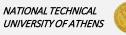
- JaqpotQuatro 2016 -


Other model validation options

Options:

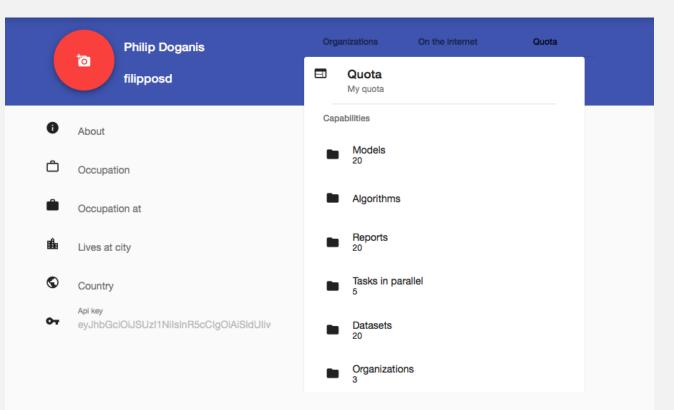
- Cross :performs Cross Validation
- Data Split :splits data into training and test datasets according to a split ratio
- External :validation with an external dataset

Offered in model webpage



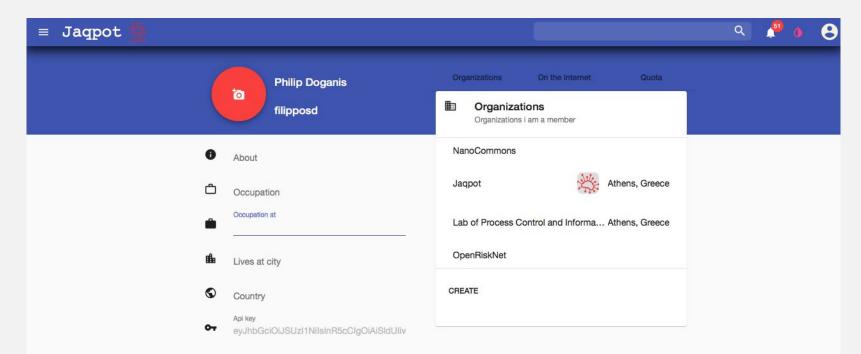
Jaqpot 5 - Login

	JAQP	от		
				English v
	Log	In		
Username or email		g	Google	
Password	9~	۲	GitHub	
Remember me	Forgot Password?			
Log In				
Lug m				
	New user?	Register		



Jaqpot 5 - User profile - Contact Info

Philip Doganis	Org	janizations	On the internet	Quota
filipposd		WWW People can fi	nd me on	
About	Ф	Website url		0
C Occupation	۲	Github url		0
Occupation at	<u>v</u>			
Lives at city	in	Linkedin url		
Country		Twitter url		•
Api key eyJhbGciOiJSUzI1NiIsInR5cCIgOiAiSIdU	Jliv			



Jaqpot 5 - User profile - Quota

Jaqpot 5 - Organizations

Jaqpot 5 - Organizations

≡ Jaqpot 🖕			० 🗳 🛛 😣
	hsarimv	Organizations Organizations i am a member	Î
	About	Jaqpot Athens, Greece	
	Contact: hsarimv@central.ntua.gr		
	About ManoCommons is a H2020 infrastructure pr infrastructure for reproducible science, and nanomaterials safety assessment and beyond	in particular for in silico workflows for	
	Edit	View	
	eyJhbGciOiJSUzI1NilsInR5cClgOi	CREATE	

Jaqpot 5 - NanoCommons Organization page

≡ Jaqpot

\$

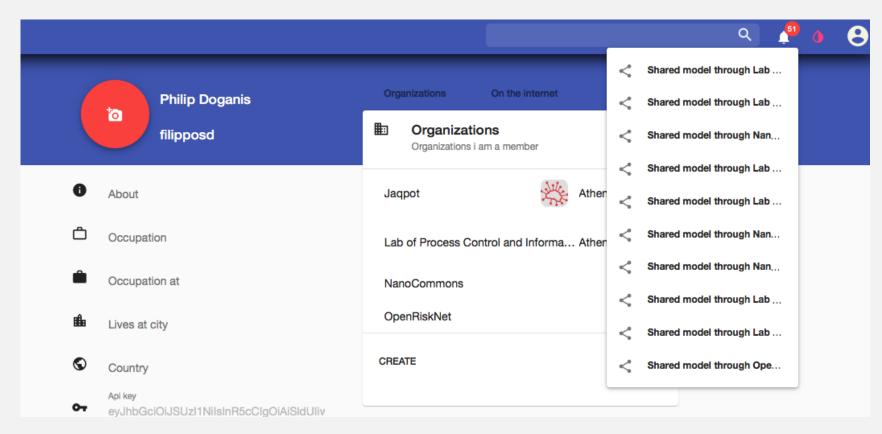
Description:

NanoCommons is a H2020 infrastructure project creating a community framework and infrastructure for reproducible science, and in particular for

Creator:

Read-across approaches, which are currently absent for NMs, in large part as a result of data fragmentation and inaccessibility, would reduce the cost of nanosafety research and regulation dramatically by removing the need for extensive laboratory and animal testing.

The availability of a nanosafety knowledge infrastructure, that organises and visualises data and data relationships, makes it accessible, integrates computational tools for risk assessment and decision support, enables their validation and facilitates the necessary grouping will be a critical factor in reducing regulatory costs.


The H2020 Infrastructures project, NanoCommons, addresses this gap by creating a community framework and infrastructure for reproducible science, and in particular for in silico workflows for nanomaterials safety assessment and beyond, by:

integration and federation of existing NMs characterisation and interaction mechanisms knowledge, protocols and data (beyond simple toxicity), along with quality assurance criteria and underpinning ontologies compilation and development of a user-friendly interface for a suite of computational tools for mechanistic and statistical modelling, read-across, grouping, safe-by-design and life cycle assessment, and bench-marking of their predictive power; and provision of (typically remote) access to its KnowledgeBase, modelling toolbox (predictive, grouping, risk assessment) and workflow optimisation, and the supporting expertise, to the broader user community.

h M f p d g

Jaqpot 5 - Sharing of resources

Jaqpot 5 - Sharing notification

MODEL S	HARED
---------	-------

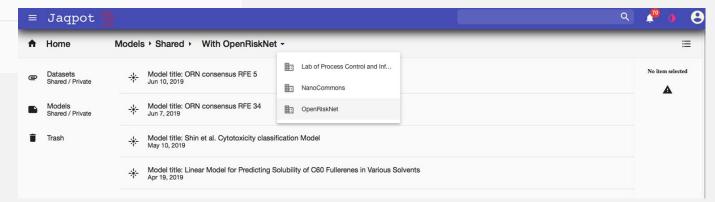
model shared through organization OpenRiskNet

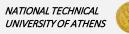
Shared	with	OpenRiskNet	~
model	Shin et a Model	al. Cytotoxicity classification	~
∕iew			

NATIONAL TECHNICAL UNIVERSITY OF ATHENS

Jaqpot 5 - Home

≡	Jaqpot 📩		. 🧖 🌢 😌
A	Home	Quick view	=
0	Datasets Shared / Private	Dataset title: Blood-Brain-Barrier Penetration Jun 10, 2019	No item selected
	Models Shared / Private	Model title: ORN consensus RFE 5 Jun 10, 2019	
Î	Trash	Model title: ORN consensus RFE 4 Jun 10, 2019	
		Model title: ORN consensus RFE 34 Jun 7, 2019	
		Model title: Neural network model predicting DILI Mar 14, 2019	




Jaqpot 5 - Shared space - Models

Model title: Neural network model predicting DILI ☀

Mar 14, 2019

The jaqpotpy library

https://jaqpotpy.readthedocs.io/en/latest/

- jaqpotpy is a python library that integrates fully the python Scikit-learn machine learning library with Jaqpot
- Only basic python programming is required to automatically deploy a predictive model as a web service in Jaqpot. Jupyter notebooks are developed to further assist model deployment.
- Similar libraries are under development for the integration of machine learning packages from other languages, R, Julia, Java.

```
from jaqpotpy import Jaqpot
import pandas as pd
from sklearn import linear_model

df2 = pd.read_csv('/path/train.csv')
X2 = df2[['Pclass', 'SibSp', 'Parch', 'Fare']]
y2 = df2['Survived']

clf = LogisticRegression(random_state=0, solver='lbfgs', multi_class='multinomial').fit(X2, y2)
```


Automated machine learning

https://jaqpotpy.readthedocs.io/en/latest/

Automated machine learning (**AutoML**) is the process of automating the end-to-end process of applying machine learning methodologies with the goal of maximizing the predictive performance of their final machine learning model:

- <u>data pre-processing</u>
- <u>feature extraction</u>
- feature selection
- algorithm selection
- hyperparameter optimization

Examples of AutoML platforms

- DataRobots: a commercial platform for AutoML
- Auto-sklearn: a Bayesian hyperparameter optimization layer on top of scikit-learn
- **TPOT**: a genetic programming optimization layer on top of **scikit-learn** that automatically creates and optimizes full machine learning pipelines.
- Auto-WEKA: a Bayesian hyperparameter optimization layer on top of WEKA
- **RRegrs**¹: an exhaustive search layer on top of **Caret** (NTUA, University of Maastricht)

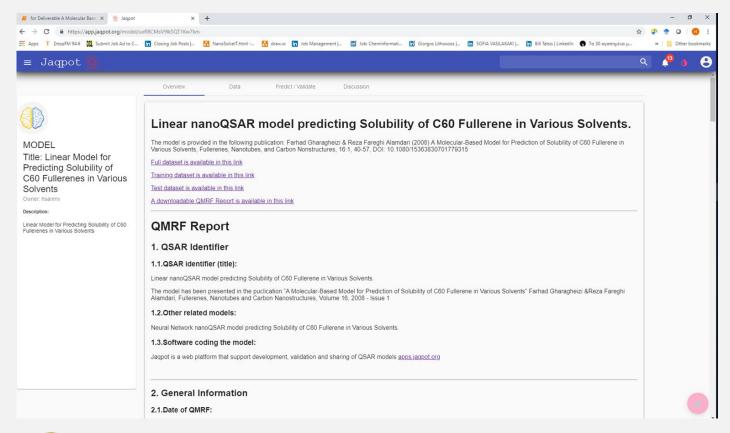
•1Tsiliki G, Munteanu CR, Seoane JA, Fernandez-Lozano C., Sarimveis H., Willighagen EL, (2015) RRegrs: an R package for computer-aided model selection with multiple regression models, Journal of Cheminformatics20157:46, https://doi.org/10.1186/s13321-015-0094-2

Jaqpot 5 – Create and deploy a nanoQSAR model using a Jupyter notebook

import pandas as pd
from jaqpotpy import Jaqpot
from sklearn.linear_model import LinearRegression
from sklearn.preprocessing import MinMaxScaler
from sklearn.pipeline import Pipeline
from sklearn.model_selection import train_test_split
from sklearn.model_selection import cross_val_score, GridSearchCV, RandomizedSearchCV
df=pd.read_csvl'C:\\MyDocuments\\European-funded\\Trexonta\\NanoCommons\\Actual Project\\WP5\\NanoQSAR deliverable\\
A Molecular Based Model for Prediction of Solubility of C60 in Various Solvents\\70 model_reduced.csv') # Reads the data

Xall=df[['piPC03', 'ATS1m', 'Seigp', 'More23e', 'H1m']] # Defines the columns that will be used as independent features Yall=df['logS Exp.'] # Defines the end-point X_train, X_test, Y_train, Y_test = train_test_split(Xall, Yall, train_size=0.75, test_size=0.25, random_state=1) # Splits the data into training and test sets stepslinear = [('scaler', MinMaxScaler()), ('MLR', LinearRegression())] pipelinelinear = Pipeline(stepslinear) # define the pipeline object.

cross_val_score(estimator=pipelinelinear, X=X_train, y=Y_train, cv=5, n_jobs=-1) #Performs a 5-fold cross validation


pipelinelinear.fit(X_train, Y_train) print('Training score: ', pipelinelinear.score(X_train, Y_train)) print('Testing score: ', pipelinelinear.score(X_test, Y_test)) print('Total score: ', pipelinelinear.score(Xall, Yall)) #Trains the model and prints R^2 statistics

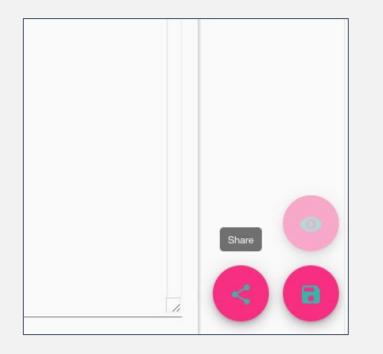
jaqpot = Jaqpot("https://api.jaqpot.org/jaqpot/services/")
jaqpot.request_key_safe()

jaqpot.deploy_pipeline(pipelinelinear,Xall,Yall,"Linear Model for Predicting Solubility of C60 Fullerenes in Various Solvents", "Linear Model", "linearmodel")

Jaqpot 5 - Model page

Jaqpot 5 - QMRF report

OMR:	QMRF identifier (JRC Inventory): To be entered by JRC QMRF Title:Linear nanoQSAR model predicting Solubility of C60 Fullerene in Various Solvents. The model has been presented in the puclication "A Molecular?Based Model for Prediction of Solubility of C60 Fullerene in Various Solvents" Farthad Gharagheizi & Rezz Fareghi Alamdari, Fullerenes, Nanotubes and Carbon Nanostructures, Volume 16, 2008 - Issue 1
	Printing Date:22-Apr-2019
1.QSAR iden	tifier
1.1.QSAR ide	ntifier (title):
Linear na	noQSAR model predicting Solubility of C60 Fullerene in Various
Solvents.	The model has been presented in the puclication "A
Molecular	Pased Model for Prediction of Solubility of C60 Fullerene in
Various S	olvents" Farhad Gharagheizi & Reza Fareghi Alamdari,
Fullerene	s, Nanotubes and Carbon Nanostructures, Volume
16, 2008 ·	Issue 1
1.2.Other rela	ited models:
Neural Ne	twork nanoQSAR model predicting Solubility of C60 Fullerene in
Various S	
1.3.Software	coding the model:
Jaqpot	-
Jaqpot is	q web platform that support development, validation and sharing of QSAR models
Haralamb	os Sarimveis
apps.jaqp	ot.org
2.General inf	ormation
2.1.Date of Q	MRF:
21 April 2	



Jaqpot 5 – PMML representation

Jaqpot 5 - Model page

ea	Other and the	
nc bili	Share model	20 14
da	Read Write Execute	
nin	Control and S Control and S Informatice	
da	NanoCommons 😒 NanoCommons 😒 NanoCommons 🔇	
els		
ЛF	Notes about sharing	
Q	Deleting is only available for the creator	
	When something is shared with Jaqpot it becomes available for all the users	
1.1	The priviledges are given to all the users of an organization whared with	- 11
ar i	View	
ent mc cu	Affiliated Orgs	
us rer OC	\mathbf{x}	
1.2.0	Other related models:	

Jaqpot 5 - Model page - Data tab

🧧 for Deliverable A Molecular Base 🗙 👲	Jaqpot x 🚸 JRC QSAR Model Database down x +										
	g/model/uxRBCMsV9lkSQT1Kw7km 🚖 🌩 🔍 🔞 :										
👖 Apps 🏋 ΣπορFM 94.6 🗰 Submit Job	Ad to C 📊 Closing Job Posts J 🚹 NanoSolvelT.html 🚹 draw.io 📊 Job Management J 🛅 Job: Cheminformati » 📙 Other bookmark										
= Jaqpot 🙅	० 🗳 💧 🤮										
	Overview Data Predict / Validate Discussion										
	Dependent feature / Predicted feature										
MODEL	logS Exp.										
Title: Linear Model for Predicting	Description: Solubility: The solubility values are not given in logarithmic values of molar fractions log(S)										
Solubility of C60 Fullerenes in Various Solvents Owner: hsarimv	Independent features										
Description:	piPC03										
Linear Model for Predicting Solubility of C60 Fullerenes in Various Solvents	Description: Molecular multiple path count of order 03										
	ATS1m										

Jaqpot 5 - Model page – Predict/Validate tab

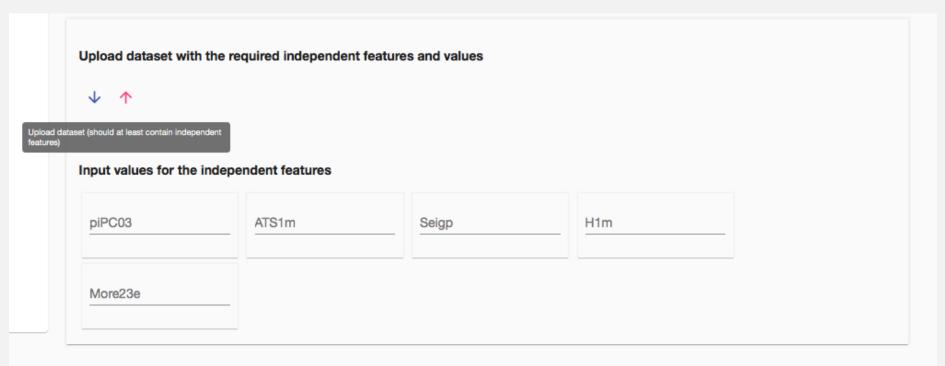
= Jaqpot 🖄						Q	á ⁵¹ ()	8
	Overview	Data	Predict / Validate	Discussion				
	Choose method							
MODEL	Predict							
Title: Linear Model	Validate							
for Predicting Solubility of C60 Fullerenes in Various Solvents Owner: hsarimv Description:	Upload dataset with ↓ ↑	the required inde	pendent features and	values				
Linear Model for Predicting Solubility of C60 Fullerenes in Various Solvents	Input values for the	independent featu	ires					
	piPC03	ATS1m	Sei	gp	More23e			
	H1m							

Jaqpot 5 - Predict - Entering values

= Jaqpot 🔆						Q	51	٥	0
	Overview	Data	Predict / Validate	Discussion					
MODEL Title: Linear Model	Choose method Predict					•			
for Predicting Solubility of C60 Fullerenes in Various Solvents Owner: hsarimy	Upload dataset with	the required ind	lependent features and	values					
Description:									
Linear Model for Predicting Solubility of C60 Fullerenes in Various Solvents	Input values for the	independent feat	tures						
various Solvents	piPC03	ATS1m	H1m		More23e				
	2.485	2.197	0.3	58	-1.227				
	Seigp O								
						 Start			

Jaqpot 5 - Predict - Downloading template

	Upload dataset with the	e required independent 1	eatures and values		
	↓ ↑				
Downloa	d template dataset (csv)				
	Input values for the inde	ependent features			
	piPC03	ATS1m	Seigp	H1m	
	More23e	_			
—					



Jaqpot 5 - Predict - Editing template

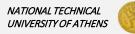
ਜ਼ ੯ਾਟਾ -						C60 FL	illerenes Tes	t Data - Ex	cel						Ā	-	8	×
File Home Inser	t Page L	ayout F	ormulas	Data	Review V	View Ac	robat ⁽	🛛 Tell me								Sign in	∕₽_ Sh	are
Paste		A A	= = =		📴 Wrap Te		General		-	Conditio) onal Format			elete Format	∑ . ↓ .	Arr Sort & Find)	
Paste → B I U →		• <u>A</u> •	= = =	€≣ ≯≣	🖽 Merge 8	& Center 🔻	₽ • %	9 €.0 .00	.00 →.0		nai rormat ng∗ Table		insert D		2-	Filter * Select		
Clipboard 🕞	Font	Gi		Alignr	ment	Gi Gi	Nu	mber	Fai		Styles			Cells		Editing		^
K8 - : ×	√ fs																	
		·																
A	В	С	D	E	F	G	н	1		J	К	L	М	N	0	P	Q	_ F
1 Solvents	piPC03	ATS1m		More23e	1	logS Exp.												-11
2 1.2.3-trichloropropane				0.025	-	-												-11
3 N.N-dimethylformami	-			0.022														-11
4 n-butylbenzene	3.426			-1.159														-11
5 1-butanol	1.099			-0.449		-5.9												-11
6 1.3-dibromopropane 7 1.1.2.2-tetrachloroeth	1.099 a 1.609	2.792		-0.614		-4.2												-11
8 1.2.3.4-tetramethylbe	-			-0.549	-	-3.1												-
9 1.3-diiodopropane	1.099			-0.34		-2.5												-11
10 R.R.R-trichlorotoluene	_			-0.288		-3.4												-11
11 1.3-dibromobenzene	3.409			-0.260		-2.6												-11
12 tetrahydrothiophene	1.792			-0.334	-													
13 1.2-dichloroethane	0.693			0.031	-													
14 dimethylnaphthalene				-0.859														
15 2-methylthiophene	3.108			-0.17														
16 1-chloronaphthalene	4.227	2.705	0.193	-0.7852	0.836	-2												
17 aniline	3.248	2.1	-0.6	-0.504	4 0.351	-3.9												
18 octane	1.792	2.079	0	-1.656	5 0.208	-5.2												
19 benzonitrile	3.548	2.216	-0.6	-0.437	7 0.592	-4.2												
20 nitroethane	1.609	1.836	-3	-0.029	0.54	-6.7												
21 1-iodo-2-methylpropa	r 1.099	2.679	0.671	-0.476	5 1.464	-4.3												
22 1.2.4-trimethylbenzen	ie 3.59	2.303	0	-0.546	5 0.338	-2.5												
23 bromobenzene	3.248	2.614	0.423	-0.552	1.267	-3.3												
24 1.2-dichlorobenzene	3.458	2.557	0.385	-0.364	1.084	-2.4												
25 1-methyl-1-cyclohexe	n 2.565	2.079	0	-0.597	7 0.295	-3.8												
C60 Fulle	erenes Test	Data	+							÷ •								Þ
Ready 🔠													E		J		+	100%
																-		

NATIONAL TECHNICAL UNIVERSITY OF ATHENS

Jaqpot 5 - Predict - Uploading data

Jaqpot 5 - Predict - Uploading data

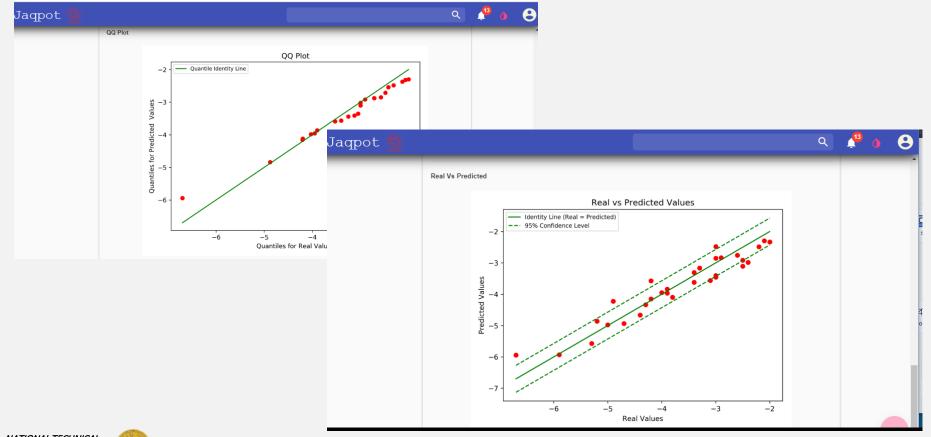
= Jaqpot 🖄							٩	A 10	
Predicting Solubility of C60	Upload dataset with the required indeper	ident feature	es and valu	es				_	
Fullerenes in Various	↓ <u>↑</u>								
Solvents11 Owner: hsarimv	Dataset formed								
Description:	Id	piPC03	More23e	Seigp	ATS1m	H1m	*		
Neural Model	1.3-Br-Cl-benzene	3.409	-0.421	0.616	2.81	1.669			
	2-iodo-2-methylpropane	0	-0.375	0.671	2.679	0.96			
	1.1.1-trichloroethane	0	0.109	0.578	2.385	0.761			
	tetralin	3.707	-0.869	0	2.485	0.493			
	nitrobenzene	3.631	-0.422	-3	2.423	0.747	- 1		
	1-methylnaphthalene	4.227	-0.863	0	2.565	0.535			
	chlorobenzene	3.248	-0.476	0.193	2.298	0.721	Ŧ		
	Erase dataset					Start proc	edure		2


Jaqpot 5 – Calculating predictions

= Jaqpot 🖄		٩	1	θ
Jaqpot Mathematical Structures of the second structures of the second structures of the second structure of the second structure of the second structures of the second structure of the second	Task started Predicted dataset or value will be returned PREDICTION Task is now running. Prediction Task is now running. Model retrieved successfully. Searching dataset Dataset has been retrieved. Starting Prediction Prediction completed successfully. Dataset was built successfully.	q		е
	Now saving to database Task Completed Successfully.			
	View Prediction			
Display a menu				

Jaqpot 5 – Displaying predictions

= Jaqpot 🖄								٩	486	•	
	View predicted value only								_		
	Id	piPC03	Seigp	More23e	ATS1m	logS Exp.	H1m	•			
	benzonitrile	3.548	-0.6	-0.437	2.216	-3.573224659989597	0.592				
	nitroethane	1.609	-3	-0.029	1.836	-5.942685616120331	0.54				
	1-iodo-2-methylpropane	1.099	0.671	-0.476	2.679	-4.335365062673921	1.464				
	1.2.4-trimethylbenzene	3.59	0	-0.546	2.303	-3.106857374005953	0.338				
	bromobenzene	3.248	0.423	-0.552	2.614	-3.1667103426568666	1.267				
	1.2-dichlorobenzene	3.458	0.385	-0.364	2.557	-2.986707060947116	1.084				
	1-methyl-1-cyclohexene	2.565	0	-0.597	2.079	-4.0994582410835925	0.295	•			
					Iten	1 - 30 of 3	1 <	>			
	Download										



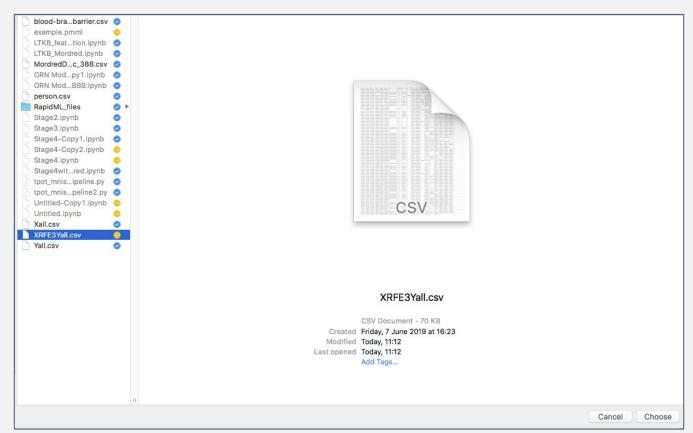
Jaqpot 5 - Predictions as CSV

E	∃ 5•∂·∓						
F	ile Home Insert Page Lay	out For	mulas (Data Rev	view Vie	ew Acro	bat Ω⊺
Pa	Cut E Copy → ste ✓ Format Painter			= = =		🖶 Wrap Te 🗄 Merge &	
	Clipboard 🕞 I	Font	Fai		Alignm	ent	Es.
F3	\bullet \bullet \bullet f_x	logS Exp	D.				
	Α	В	с	D	Е	F	G
1	My Report						
2							
3	Id	piPC03	Seigp	More23e	ATS1m	logS Exp.	H1m
4	1.2.3-trichloropropane	1.609	0.578	0.025	2.473	-3.94955	0.927
5	N.N-dimethylformamide	1.609	-1.8	0.022	1.763	-5.57236	0.328
6	n-butylbenzene	3.426	0	-1.159	2.398	-3.30598	0.449
7	1-butanol	1.099	-1.2	-0.449	1.674	-5.93075	0.192
8	1.3-dibromopropane	1.099	0.846	-0.614	2.792	-4.14809	1.495
9	1.1.2.2-tetrachloroethane	1.609	0.771	0.212	2.625	-3.56029	0.925
10	1.2.3.4-tetramethylbenzene	3.778	0	-0.549	2.398	-2.8382	0.353
11	1.3-diiodopropane	1.099	1.342	-0.322	3.184	-3.62094	2.213
12	R.R.R-trichlorotoluene	3.548	0.578	-0.288	2.825	-2.47845	1.259
13	1.3-dibromobenzene	3.409	0.846	-0.468	3.011	-2.7568	2.212
14	tetrahydrothiophene	1.792	0.393	-0.334	2.234	-4.22402	0.552
15	1.2-dichloroethane	0.693	0.385	0.031	2.067	-4.97891	0.432
16	dimethyInaphthalenes	4.311	0	-0.859	2.639	-2.2963	0.516
17	2-methylthiophene	3.108	0.393	-0.17	2.236	-3.40151	0.577
18	1-chloronaphthalene	4.227	0.193	-0.7852	2.705	-2.32955	0.836
19	aniline	3.248	-0.6	-0.504	2.1	-3.83971	0.351

Jaqpot 5 – Model validation

Jaqpot 5 - Social network of models

= Jaqpot 🌺						۹	_ ⁵¹ ()	0
	Overview	Data	Predict / Validate	Discussion					
MODEL Title: Linear Model for Predicting Solubility of C60	Leave a comment I am speechless.					Save			
Fullerenes in Various Solvents Owner: hsarimv Description:									
Linear Model for Predicting Solubility of C60 Fullerenes in Various Solvents									


Jaqpot library of nanoQSAR models

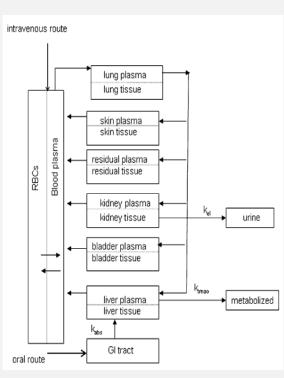
Jaqpot 4/NanoCommons account, Jaqpot 5/ Nanocommons organization

Model description	Endpoint	Model URIs
Methodology for developing structure-activity evaluation to identify combinations of physical features of nanomaterial that influence potential cell damage by MLR/LDA (TiO2 case) Sayes & Ivanov (2010)	In vitro - Cytotoxicity - membrane damage measured as lactate dehydrogenase (LDH) release [units/L]	Jaqpot 4: http://jaqpot.org/m_detail?name=2KoKHclgMJloSeWuZ03a Jaqpot 5 https://app.jaqpot.org/model/izMncmc5LMbgC6o7Fkj8
Methodology for developing structure-activity evaluation to identify combinations of physical features of nanomaterial that influence potential cell damage by MLR/LDA (ZnO case) Sayes & Ivanov (2010)	In vitro - Cytotoxicity - membrane damage measured as lactate dehydrogenase (LDH) release [units/L]	Jaqpot 4: http://jaqpot.org/m_detail?name=cm49KGhUjkMw6wyntKQF Jaqpot 5: https://app.jaqpot.org/model/fvAe4KnIOOiNgGf7Ve1p
Regression model to understand the aggregated ZVCN against E.Coli by MLR (Placket-Burman design) Rispoli et al. (2010)	In vitro - Cytotoxicity - measured as percentage of dead E. Coli population	Jaqpot 4: http://jaqpot.org/m_detail?name=48JYATz0KFTkZjGd8AfS_laqpot.org/model/8su6n4cfcJpzZD2NDZGN
Prediction of the Biological surface adsorption index (BSAI) on different NPs by MLR Xia et al. (2011)	log(k) k: adsorption coefficient	Jaqpot 4: http://jaqpot.org/m_detail?name=DjRQk8AqG42nckg5KoxZ Jaqpot 5: https://app.jaqpot.org/model/gSvjUZ17EEAV5OWL7Uls
Predictive model of TiO2 NPs damage on membrane cell by SMILES-based optimal descriptor and Monte Carlo technique (CORAL software) Toropova & Toropov (2013)	In vitro - Cytotoxicity - membrane damage measured as lactate dehydrogenase (LDH) release [units/L]	Jaqpot 4: <u>http://jaqpot.org/m_detail?name=4oxlwXBZMJ4suYFTSI4d</u> Jaqpot 5: <u>https://app.jaqpot.org/model/nTJgb4Ss3zHIYZEcbg78</u>
Cytotoxicity of metal oxide to bacteria E.Coli models by Periodic table-based descriptors and stepwise-MLR Kar et al. (2014)	In vitro - Cytotoxicity - measured as pEC50	Jaqpot 4: <u>http://jaqpot.org/m_detail?name=EFffilLYKMgLUq3qNYBw</u> Jaqpot 5: <u>https://app.jaqpot.org/model/QgRRwyU8r7e0NubEuDdX</u>
Photo-induced toxicity of metal oxide NPs to E. Coli by MLR (dark condition case) Pathakoti et al. (2014)	In vitro - Cytotoxicity - measured as -log(LC50)	Jaqpot 4: http://jaqpot.org/m_detail?name=KIWUeeIVM8x7x1iC7cXi Jaqpot 5: https://app.jaqpot.org/model/hygpzrH71XS1Wr8IGS69
Photo-induced toxicity of metal oxide NPs to E. Coli by MLR (Photo-induced (light) case) Pathakoti et al. (2014)	In vitro - Cytotoxicity - measured as -log(LC50)	Jaqpot 4: http://jaqpot.org/m_detail?name=o6Jr81BfQtUddgmwqaee Jaqpot 5: https://app.jaqpot.org/model/SgCY316DzDh1Fdw4aigo
Predicting metal oxide Nps toxicity to E. Coli cell line by MLR Toropov et al. (2018)	In vitro - Cytotoxicity - measured as log(1/EC50)	Jaqpot 4: <u>http://jaqpot.org/m_detail?name=qul6HILHSypXWX8zvMQ3</u> Jaqpot 5: <u>https://app.jaqpot.org/model/OAiBYuee5PLJ7F580f2J</u>
Predicting C60 solubility in organic solvents by SMILES-based optimal descriptor and Monte Carlo technique Gharagheizi & Alamdari (2008)	Solubility in organic solvents	Jaqpot 4: <u>http://jaqpot.org/m_detail?name=sCoqY3D3xCpSuyS6RdoQ</u> Jaqpot 5: <u>https://app.jaqpot.org/model/VRp8f6A4DuJc8fsavvpB</u>

Jaqpot 5 - Datasets - Uploading new dataset

Jaqpot 5 - New dataset -Dataset details

Filename: XRFE3Yall.csv Dataset's id	IdATSC3dv	ATSC6d	ATSC7i	ATSC8i	MATS2i	GATS2m	NsCł	Features
Blood-Brain-Barrier 💌	0 0.56838137	0.5045581	50.32772753	0.4014363	0.44868296	0.4749173	380	ATSC3dv
Dataset's id from csv: Blood- Brain-Barrier Penetration	0 0.4094099	0.5707962	50.33246857	0.41079742	20.34907413	0.5754712	2 0	Description
^{Title *} Blood-Brain-Barrier Pene	0 0.3725539	0.5431615	0.32753754	0.42879343	30.52822345	0.4428055	560.07	
Description *	1 0.31555578	0.4539304	0.23253489	0	0.60701066	0.4608991	140.07	Units
arhad Gharagheizi & 📗 Reza Fareghi Alamdari 🍃	1 0.64531374	0.8208577	0.33246857	0.41079742	20.75384444	0.463907	0	Ontological Classes
ubjects Ullerene	1 0.5689562	0.8647561	70.17511162	0.3637108	0.4746896	0.3177315	560.35	
	1 0.5056574	0.5190517	0.29254708	0.35834914	40.61428285	0.4379570	050	ATSC6d
Audiences	1 0.57912403	0.44920012	20.03931781	0.07642876	60.8059602	0.3211879	9 0.14	Description
^{ags} Fullerene , Solubility	1 0.4270075	0.4512520	70.24331617	0.4307320	70.5959102	0.6408699	9 0.14	


Jaqpot 5 - Dataset page

= Jaqpot 🙅						۹		<u> </u>
	Overview	Data	Discussion				-	
DATASET Title: Blood-Brain-	of Molecular Desc Chun Wei Yap, Ch picture by: By Sto	riptors on the Predic boong Yong Ung, Yin	tion of Blood–Brain Barrier F g Xue, Zhi Wei Cao and Yu Z Sá-Pereira I, Dziegielewska	Penetrating and Nonpenetratin ong Chen, J. Chem. Inf. Mode KM and Saunders NR - Stolp	HB, Liddelow SA, Sá-Pereira I, D	Methods, Hu Li, Dziegielewska KM		
Barrier Penetration Owner: filipposd Description:	Integr. Neurosci. 7	:61. doi: 10.3389/fni			ient and neurological function in (fnint.2013.00061/full, CC BY-SA			
Binary Blood-Brain-Barrier Penetration Data after applying Recursive Feature Elimination (Penetrating/Non-Penetrating).								
								0

PBPK model: Multi-compartment model (System of Ordinary Differential Equations, ODEs)

- Mechanistic models that incorporate species' physiology
- Provide information about the concentration-time profile
- Advantage: can conduct meaningful extrapolation
- Two types of parameters: physiological and drugrelated

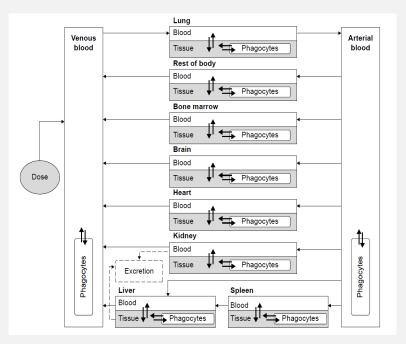
Non-metabolizing compartments:

$$V_{bl}^{i} \frac{dC_{v}^{i}(t)}{dt} = Q_{i}(C_{art}(t) - C_{v}^{i}(t)) - \pi_{i} \left(C_{v}^{i}(t) - \frac{C^{i}(t)}{P_{i}}\right)$$
$$V^{i} \frac{dC^{i}(t)}{dt} = \pi_{i} \left(C_{v}^{i}(t) - \frac{C^{i}(t)}{P_{i}}\right)$$

Metabolizing compartments:

$$V_{bl}^{i} \frac{dC_{v}^{i}(t)}{dt} = Q_{i}(C_{art}(t) - C_{v}^{i}(t)) - \pi_{i} \left(C_{v}^{i}(t) - \frac{C^{i}(t)}{P_{i}}\right) - r_{ex}^{i}\left(C_{v}^{i}(t)\right)V_{bl}^{i}$$

$$V^{i} \frac{dC^{i}(t)}{dt} = \pi_{i} \left(C_{v}^{i}(t) - \frac{C^{i}(t)}{P_{i}} \right) - r_{met}^{i} \left(C^{i}(t) \right) V^{i}$$


Blood:

$$V^{pl} \frac{dC^{pl}(t)}{dt} = u(t) + \sum_{i \in I_0 \cup I_1} Q_i C_v^i(t) + \pi_{rbc} C^{rbc}(t) - \pi_{pl} C^{pl}(t) - Q_{pl} C^{pl}(t)$$
$$V^{rbc} \frac{dC^{rbc}(t)}{dt} = \pi_{pl} C^{pl}(t) - \pi_{rbc} C^{rbc}(t)$$

Lung:

$$V_{bl}^{lu} \frac{dC^{art}(t)}{dt} = Q_{lu}(C^{pl}(t) - C^{art}(t)) - \pi_{lu} \left(C^{art}(t) - \frac{C^{lu}(t)}{P_{lu}} \right)$$
$$V^{lu} \frac{dC^{lu}(t)}{dt} = \pi_{lu} \left(C^{art}(t) - \frac{C^{lu}(t)}{P_{lu}} \right)$$

Physiologically based pharmacokinetics (PBPK) models for nanomaterials

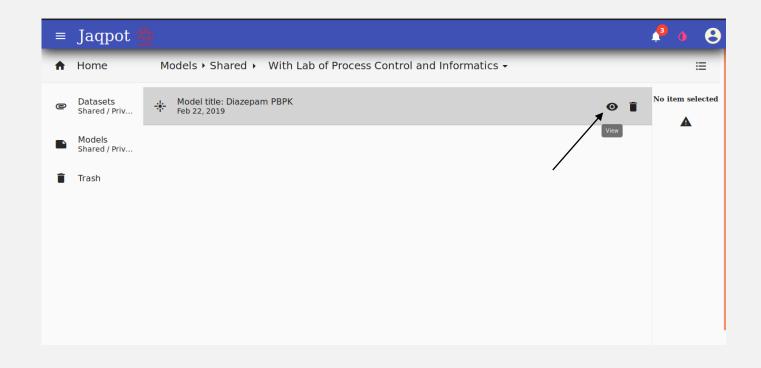
Carlanderg U., Li D., Jolliet O.,, Emond C., Johanson G., Toward a general physiologically-based pharmacokinetic model for intravenously injected nanoparticles, International Journal of Nanomedicine, 2016

The Jaqpotr library: Uploading a model to Jaqpot through R

- Define a dataset containing the dose, infusion time, initial concentrations and other covariates used as model input
- Define a system of differential equations as a function (according to the deSolve package)
- Define a function that generates covariates, whose output will be parsed to the differential equations

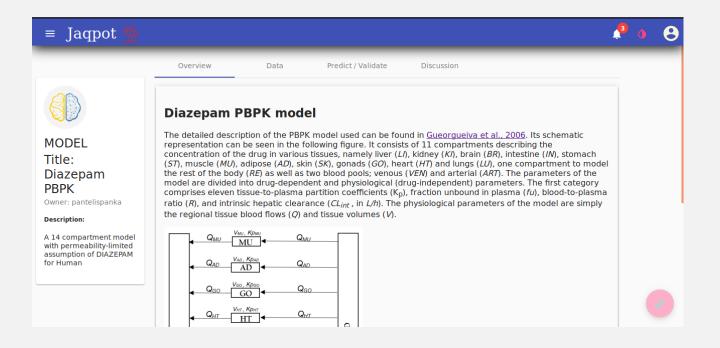
• Define the compartment names and declare the input compartment

	<i>#####################################</i>	
<pre># User input = # # # User input = # # # # # # # # # # # # # # # # # # #</pre>	<pre>density <= rep(1,14) flow_frac<c(0,17,0,05,0,001,0,05,0,04,0,12,0,19,0,0,0,1,0,14,1,0,065) const="-list(k1,k2,k3,k4,k5,k6,k7,k8,k9,k10,k11,k12,k13,k14)" const_w,list(k1,k2,k3,k4,k5,k6,k7,k8,k9,k10,k11,k12,k13,k14)="" const_w,list(list(k1,k2,k3,k4,k5,k6,k7,k8,k9,k10,k11,k12,k13,k14)="" const_w,list(list(list(list(list(list(list(list(<="" const_w-list(k1,k2,k3,k4,k5,k6,k7,k8,k9,k10,k11,k12,k13,k14)="" th=""><th><pre>server.serv</pre></th></c(0,17,0,05,0,001,0,05,0,04,0,12,0,19,0,0,0,1,0,14,1,0,065)></pre>	<pre>server.serv</pre>
NATIONAL TECHNICAL UNIVERSITY OF ATHENS	<pre>combine<-c(flow,vol) return(combine) }</pre>	

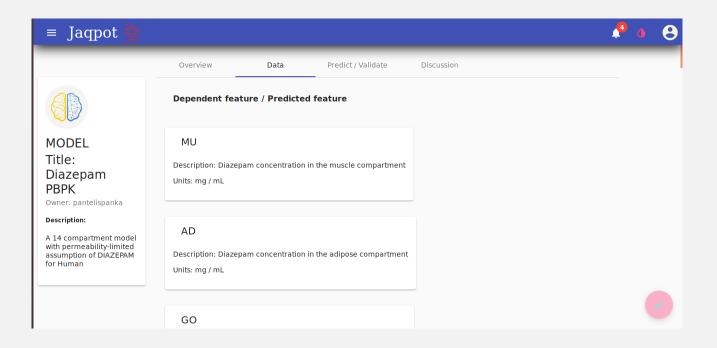

Calling deploy.pbpk()

- Load jaqpotr
- Call deploy.pbpk() and provide the dataset, covariate model, differential equations, compartment names and input
- Give Jaqpot base path (<u>https://api.jaqpot.org/</u>) and choose the authentication method (Api key or Jaqpot credentials, i.e. username and password)
- Add a model title (cannot be edited) and a short description (editable)
- The PBPK model is generated and the model id is provided.
- The user can further refine the model description and information through the Jaqpot UI

```
> deploy.pbpk(data=user_input, odes=odes, comp.names=comp_names, comp.in='VEN', cov.model=covariates )
Base path of jaqpot *e.g.: https://api.jaqpot.org/ : https://api.jaqpot.org/
Please choose authentication method ([1]=login / [2]=Provide Api Key): 1
Username: PeriklisTs
Title of the model: upload test
Short description of the model:this is a short description
[1] "Model created. The id is: DLGxOzkvGkU9ctHi4wRW . Please visit the application to further document your
model."
>
```



Accessing the model



Entering model information through Jaqpot UI

Add description and units to the model variables

Perform PBPK simulations

- Users can enter dose and physiological characteristics and get predictions
- Upload dataset or manually fill in values

Human	Input values for	the independent features			
	weight 70	gender 0	dose 10	infusion_time 0.08	
	kg	0: male, 1: female	mg	hours	_
	C0_MU	C0_AD	C0_HT	C0_BR	
	0	0	0	0	
	mg/mL	mg/mL	mg/mL	mg/mL	
	C0_TE	C0_SK	C0_RE	C0_KI	
	0	0	0	0	
	mg/mL	mg/mL	mg/mL	mg/mL	
	C0_ST	C0_LU	C0_LI	C0_SPL	
	0	0	0	0	
	mg/mL	mg/mL	mg/mL	mg/mL	
	C0_ART	C0_VEN			
	0	0			
	mg/mL	mg/mL	-		

Getting predictions

• Predictions are generated in a table form and can be downloaded as a csv file and be further processed offline

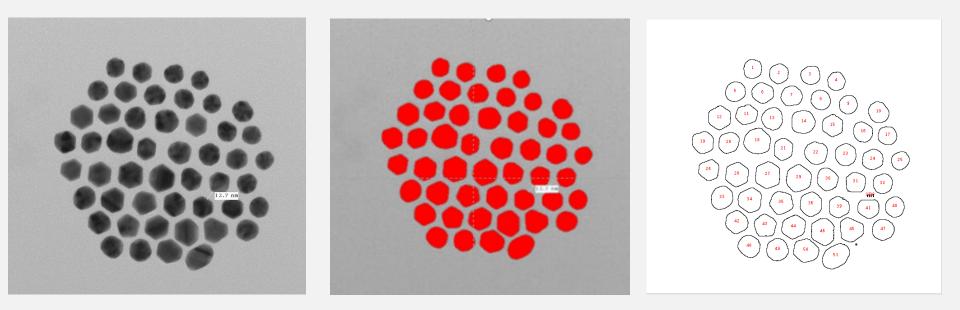
oot 🏂		··· <i>y</i>											4
- кі	LU HT	VEN	MU	AD	time	LI	BR	RE	ART	IN	GO	SK	T
0	0 0	0	0	0	0	0	0	0	0	0	0	0	
).044910.117	7110.441 11.0	5265122.791	15.8397	6.2557	0.0833	17.593	24.3933	5.3065	115.9	577.273	9.7803	5.878	
7938 6.568	6.3093 7.7	76 74.0195	5.295	23.970	60.25	12.011	12.8846	4.7144	74.91	554.778	6.9366	4.2039	
2253 4.0893	3 3.936 4.83	376 46.1796	5 3.2714	39.214	20.5	7.4684	1.7954	2.9138	46.649	932.9739	4.309	2.6109	
8791 2.790	1 2.692 3.29	974 31.5866	5 2.2108	47.015	10.75	5.0874	1.2245	1.9702	31.83	322.0283	2.9318	1.776	
1715 2.1072	2 2.038 2.48	38 23.9157	1.6536	50.928	11	3.836	0.9245	1.4745	24.04	561.5312	2.208	1.3372	
5983 1.5539	9 1.508 1.83	322 17.6985	5 1.2026	53.633	1.5	2.8222	0.6814	1.0732	17.73	561.1285	6 1.6218	0.9818	
							Ite	ems per p	age: 30	1 - 18	6 of 18	< >	
Download													

Predictions in a csv file

<u></u>	- 🗧 - 🗆	one- 🔻	0.00 "		F) 🕭 (None 🔻			- I	G	J 🗐 📒	- - -	F 🖏 I	-				
16		- 5 2	E = 1.0	965														
	А	В	С	D	E	F	G	Н	1	J	К	L	M	N	0	Р	C	2 I
1	My Report							_			_	_			_	_		
2	ld	time	кі	LU	нт	VEN	NAL I	AD	ST	LI	BR	RE	ADT	IN	GO	SK		
3 4	10	ume 0			0		мų	AD	51	LI	DR	RE	ART	IIN	GO	SK		· •
5	2	-	10.1171							Diazepi	ma cono	etratic	on-time	profile i	n kidne	evs		
6	3	0.25	6.568		7.776											y -		-
7	4	0.5	4.0893		4.8376			12 -										
8	5	0.75	2.7901		3.2974													
9	6	1	2.1072	2.038	2.488	23.9157	1.0	10									-	
10	7	1.5	1.5539	1.508	1.8322	17.6985	1.:	T										
11	8	2	1.3908	1.3517	1.639	15.8641	1.0	<u> </u>									-	_
12	9	3	1.3073	1.2713	1.5402	14.9207	1.0	Concentration (mg/mL)										
13	10	4	1.2718	1.2367	1.4983	14.5155	0.¦	6 6 ·	r									🗕 КГ 🖳
14	11	6	1.2102		1.4258	13.8133	0.	rat										
15	12	8	1.1519		1.3572	13.1481	0.	ja 4-l									-	
6	13	10	1.0965		1.2918	12.515	0.	ouo										
17	14	12	1.0437		1.2296	11.9123	0.	0 2-									-	
8	15	24		0.7548	0.9145	8.8592					_		_			_		
19	16	36		0.5614	0.6801	6.5886		0			-			1		1		
20	17	48	0.4293		0.5058	4.9		() 10) 20	30	4	0 5	0 6	0	70	80	
21	18	72	0.2374	0.2309	0.2798	2.7102	0.					Time (I	hours)					
22																		

Jaqpot Image Analysis

https://app.jaqpot.org/nanolmage/


Calculating image descriptors for spherical nanomaterials

MENU E
ge Preview
+ Choose a file from your system
Or use an example Spherical Image
Insert
ameters
esc filter type: Default v
est function type: Particle count and analysis *
N/m:: 1.000
Select All Deselect All Angie Area Aspect Ratio Circularity Feret Angle Grey Deviation Integrated Density Kurtosis Major Axis Max Grey Value Mean Grey Value Min Grey Value Min Feret Minor Axis Modal Grey Value Perimeter Porosity Roundness Skeweness Soldity Sphericity Suface Diameter Volume Volume to Surface
ubmit

Revults of this tool are derived from Image/, with additional descriptors provided, as described in: Philip Deganis, Georgia Tsiliki, Haralambos Sarimveis, Haralambos Chomendis, Eqon Willphane, Barry Hardy, 2015, April 20, Delwrendle Report Da 2 Descriptor calculation Algorithms and Methods. Zenodo. http://doi.org/10.0281/zenodo.372609

Calculating image descriptors for spherical nanomaterials

Calculating image descriptors for spherical nanomaterials

				List of Pr	roperties				Col
				(1 of 3) 1 2	3 ++ +1 25 \$				
id	Angle	Area	Aspect Ratio	Circularity	Feret Angle	Grey deviation	Integrated Density	Kurtosia	Major Axis
Average Particle	96.13313	780.2823	1.0759023	0.8592815	97.67603	21.327768	53979.883	-0.44196674	32.50095
t	31.853	514.877	1.049	0.889	22.620	20.576	39233.001	-0.810	26.222
2	23.957	552.505	1.061	0.846	158.587	16.775	46490.280	-0.733	27.320
3	4.397	476.167	1.058	0.862	170.910	24.161	33538.219	-0.988	25.329
4	110.551	433.125	1.013	0.886	111.801	20.821	35176.785	-0.698	23.633
5	106.344	813.192	1.125	0.852	103.627	24.343	50797.166	-0.422	34.125
6	131.483	631.550	1.099	0.904	109.654	23.437	43264.853	-0.708	29.726
7	84.296	559.543	1.074	0.841	82.875	24.121	40191.019	-1.008	27.661
8	25.308	655.643	1.089	0.887	32.106	22.161	44481.122	-0.506	30.148
9	106.995	769.609	1.190	0.857	94.205	19.459	58704.946	-0.626	34.141
10	138.673	523.269	1.112	0.880	162.582	19.736	39727.846	-0.525	27.217
11	170.300	851.091	1.067	0.868	147.724	26.882	44428.605	-0.206	34.011
12	162.309	707.347	1.032	0.845	142.943	20.357	50640.700	-0.664	30.490
13	124.555	693.000	1.049	0.862	146.310	20.356	49973.146	-0.491	30.430
14	70.426	836.202	1.154	0.872	52.633	22.376	51461.472	-0.118	35.048
15	143.829	845.406	1.073	0.884	110.556	22.381	54884.242	-0.403	33.977
16	63.841	531.119	1.031	0.889	23.629	20.101	37434.179	-0.321	26.400
17	46.369	602.044	1.141	0.857	23.070	20.942	47170.286	-0.910	29.568
18	51.225	743.621	1.028	0.861	79.046	22.626	52225.667	-0.724	31.202
19	33.415	624.241	1.042	0.881	40.061	22.603	40840.706	-0.457	28.774
20	58.898	705.994	1.056	0.885	51,633	24.296	46138.366	-0.647	30.816
21	57.115	770.421	1.071	0.894	52.595	21.787	50777.405	-0.292	32.416
22	79.090	870.852	1.100	0.824	81.870	14.121	76792.515	-0.466	34.924
23	140.855	832.412	1.018	0.836	80.538	21.035	62232.207	-0.601	32.850
24	104.264	1026.235	1.136	0.863	84.668	23.455	59227.132	0.062	38.526

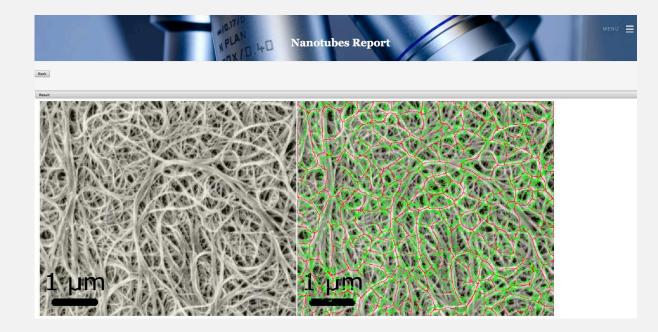
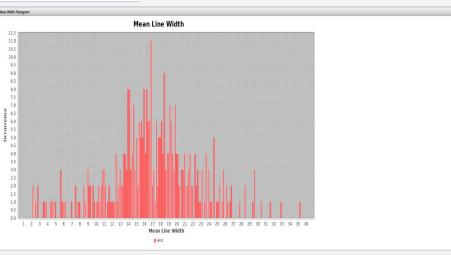

Calculating descriptors for carbon nanotubes

Image Preview		#10.17/10 NPLAN 20X/10	.40 Nan	otubes	
Or use an example Nanotube Image Insert Signa: 858 Lover Thresholi: 0.0 Upper Thresholi: 0.17 Pixel to rm raiso: 1: 1.000	Image Preview				
Parameters Sigma: 8.58 Lower Threahold: 0. Upper Threahold: 0.7 Pixel to nm ratio: 1: 1.000	+ Choose a file f	from your system 🧳 Upload 🛛 🥥 Cancel			
Parameters 8.58 Lower Threshold: 0.0 Upper Threshold: 0.17 Pixel to nm ratio: 1: 1.000	Or use an example	e Nanotube Image			
Sigma: 8.58 Lower Threshold: 0.0 Upper Threshold: 0.17 Pixel to nm ratio: 1: 1.000	Insert				
Sigma: 8.58 Lower Threshold: 0.0 Upper Threshold: 0.17 Pixel to nm ratio: 1: 1.000					
Lower Threshold: 0.0 Upper Threshold: 0.17 Pixel to nm ratio: 1: 1.000	Parameters				
Upper Threshold: 0.17 Pixel to nm ratio: 1: 1.000	Sigma:	8.58			
Pixel to nm ratio: 1: 1.000	Lower Threshold:	0.0			
	Upper Threshold:	0.17			
✓ Process	Pixel to nm ratio: 1:	1.000			
	✓ Process				

Kesuns of this tool are early our form the coge between pugning in mago. For more information, please refer to: https://image_inet/Ridge_Detection Steger (2, 1998. An unbiased detector of curvilinear structures. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(2), pp.113–125. For comments on calculated descriptors please refer to: https://juthub.com/thorstemvagner/lip-ridgedetection/issues

Calculating descriptors for carbon nanotubes



Calculating descriptors for carbon nanotubes

		Summary per Nanotube	
	25 \$	of 18)	
Mean Line Width		Length	Contour Id.
	19.366	48.454	age
	28.483	19.418	3
	24.792	17.790)
	25.183	7.478	1
	25.178	46.242)
	16.801	14.275	1
	12.935	32.286	,
	26.992	14.343	1
	1.604	13.759)
	20.631	83.469	
	16.003	90.604	2
	10.702	7.791	,
	21.867	21.103	3
	9.732	9.903	1
	24.179	81.181	3
	26.074	16.636	,
	10.881	10.734	,
	30.725	17.560	í
Mean Width Histogram	26.727	4.866	5
	28.741	13.263)
11.5	18.465	30.053	3
11.0	26.611	30.000	1
10.5	11.774	89.276	3
10.0	23.434	40.501	,
9.5	27.627	30,406	,

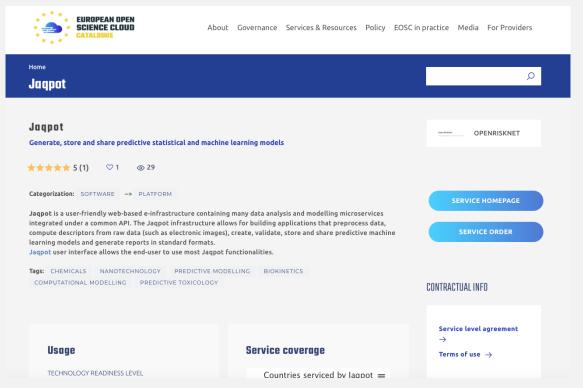
Download Summ

Jaqpot: Other services

ToxFlow¹: a read-across methodology, considers the multi-perspective characterization of nanoparticles and selects neighbour based on both physicochemical and biological similarity criteria, <u>http://147.102.86.129:3838/toxflow</u>¹

Dose-response modelling : a web implementation of the Benchmark Dose (BMD) approach for estimating derived no-effect levels (DNELs). Integrates the PROAST open-source software developed by RIVM

Biodescriptor calculations² : descriptors which are derived by enriching high-throughput omics data with biological-pathway information


Biokinetics: Integration of high-throughput toxicokinetics (httk) and PK-Sim software platforms

¹Varsou DD, Tsiliki G, Nymark P, Kohonen P, Grafström R, Sarimveis H.(2018) toxFlow: A Web-Based Application for Read-Across Toxicity Prediction Using Omics and Physicochemical Data, J Chem Inf Model. 2018 Mar 26;58(3):543-549. doi: 10.1021/acs.jcim.7b00160

²Tsiliki G, Nymark P, Kohonen P, Grafström R, Sarimveis H. (2017) Enriching Nanomaterials Omics Data: An Integration Technique to Generate Biological Descriptors, Small Methods; 1700139.

Jaqpot in EOSC Catalogue

https://catalogue.eosc-portal.eu/service/openrisknet.jaqpot_

NanoCommons Transnational Access Programme

https://www.nanocommons.eu/apply-for-access/

NATIONAL

UNIVERSITY OF ATHENS

← → C	ns.eu/ta-access/
🗰 Apps 🏋 ΣπορFM 94.6 ႈ Submit Job Ad t	ro C 📅 Closing Job Posts 🚹 NanoSolvelT.html 🚹 draw.io 🛅 Job Management 🛗 Job: Cheminformati 🛗 Giorgos Lithoxoos 🛅 SOFIA VASILAKAKI 🛅 Bill Tatsis LinkedIn 🌑 Τα 30 αγαπημένα μ » 📔 Other bookmarks
	Home Overview e-Infrastructure Communication Contact Members Area () () () () ()
	Transnational access
	The NanoCommons Transnational Access (TA) is the ability of nanosafety Researchers from industry, academia and regulatory bodies to access the state-of-the-art NanoCommons expertise free of charge and take advantage of the NanoCommons services, facilities and knowledge to advance their work, solve problems and take their research to the next level.
	NanoCommons is designed to provide innovative solutions for data mining, harmonisation, utilisation and re-utilisation, including incorporation of a range of modelling and decision support tools that require organised high-quality datasets on which to run, provided via an Open Access, federated Knowledge Commons platform. Access to the platform and the supporting tools will be provided to the nanosafety community and its broadest set of stakeholders (enterprise, regulators, insurance and society broadly) via funded calls for Transnational access, as well as development of demonstration User case studies targeting the key stakeholders (academia, industry, regulators).
	NanoCommons is envisaged as a bridge between academic research organisation and industry, and subsequently regulatory bodies, focused as it is on implementing the recommendations of the NanoSafety Cluster "Closer to the Market" Research Roadmap, and with its emphasis on co-development of solutions to industry challenges around safety-by-design and Life cycle assessment whilst also needing to maintain desired functionality and competitive market positioning.
	Access the NanoCommons e-infrastructure
	Transnational Access Guidelines Apply for Transnational Access Transnational Access Services

Conclusions

Jaqpot constitutes a **universal platform** that **produces and exchanges** semantically annotated datasets and machine learning **predictive models**.

- Jaqpot is an open source web infrastructure with a flexible structure:
 - generalization across disciplines
 - **integration to third-party tools** in order to fulfil modelling needs on the Cloud
 - easy integration to diverse architectures/ontologies/knowledge domains.
- Jaqpot offers a seamless way to:
 - take models out of the desktop or paper and automatically make them available as web services via their URI
 - functionality is provided both through an **API and GUIs**.

Thank you!

