Transitioning to predictive analysis for nanoparticle biocorona studies

Korin E. Wheeler, PhD

Associate Professor, Dept. of Chemistry & Biochemistry

https://doi.org/10.1371/journal.pone.0175871

DOI: 10.1021/cr400295a

https://doi.org/10.1371/journal.pone.0182906

State of the	Predictive	Reporting	Implications
field	Analysis	Standards	& Next Steps

A decade of the protein corona

ACS Nano, **2017**, *11* (12), pp 11773–11776 **DOI:** 10.1021/acsnano.7b08008

My Hypothesis: If we really understand the protein corona (PC), then we should be able to predict its composition.

Image: Walkey, C.D. et al ACS Nano 2014, 8(3) 2439-2455

Image: Walkey, C.D. et al ACS Nano 2014, 8(3) 2439-2455

Finlay, et al *ES:Nano*, **2018**, 5 (1), 64-71.

Eigenheer, et al *ES:Nano*, **2014**, 1 (3), 238-247.

images: P. Bergese and K. Hamad-Schifferli (eds.), *Nanomaterial Interfaces in Biology: Methods and Protocols, Methods in Molecular Biology*, vol. 1025, DOI 10.1007-978-1-62703-462-3 11.

Unique approach: defining an enrichment factor

Finlay, et al *ES:Nano*, **2018**, 5 (1), 64-71.

11

State of the	Predictive	Reporting	Implications
field	Analysis	Standards	& Next Steps

Random forest classification

builds multiple decision trees and merges them together to get a more accurate and stable prediction.

Findlay, M.R. et al ES: Nano 2018,5, 64-71.

Finlay, et al *ES:Nano*, **2018**, 5 (1), 64-71.

Finlay, et al *ES:Nano*, **2018**, 5 (1), 64-71.

State of the	Reporting	Predictive	Implications
field	Standards	Analysis	& Next Steps

Our Random Forest Classification analysis gives:

- Accuracy 76 %
- F1-score 0.81

ACS Nano, 2017, 11 (12), pp 11773–11776 **DOI:** 10.1021/acsnano.7b08008

on 'unbound' proteins is necessary. 17

State of the	Predictive	Reporting	Implications
field	Analysis	Standards	& Next Steps

Can we mine the PC literature?

To assess the first decade Top 110 cited "protein corona" papers from

2014-2017

Reviewed for:

- 1. diversity of systems
- 2. data reporting & preproducibility

State of the	Predictive	Reporting	Implications
field	Analysis	Standards	& Next Steps

1. Diversity of Systems

State of the	Predictive	Reporting	Implications
field	Analysis	Standards	& Next Steps

1. Diversity of Systems

<u>Engineered</u> Nanomaterial

- 20 % metal ENMs
- 30 % silica & polystyrene
- No "next generation" ENMs

State of the	Predictive	Reporting	Implications
field	Analysis	Standards	& Next Steps

2. Assessing preproducibility

100%

State of the
fieldPredictive
AnalysisReporting
StandardsImplications
& Next Steps

NATURE NANOTECHNOLOGY

https://www.nature.com/articles/s41565-018-0246-4

State of the	Predictive	Reporting	Implications
field	Analysis	Standards	& Next Steps

But nanomaterial transform in a biological system...

Engineered nanomaterial

Nanomaterial postbiofluid exposure

Biological characterization

State field	e of the	Predictive Analysis	Reporting Standards	Implications & Next Steps
Official Contraction Contraction Contraction Contraction Contraction Contraction Contraction Advantation A				<u>ry</u>
	Alvis E Chris S Terry 0 Marko Schulz		TIVE	
The minimum information about a proteomics experiment (MIAPE) Chris F Taylor ^{1,2} , Norman W Paton ^{1,3} , Kathryn S Lilley ^{1,4} , Pierre-Alain Binz ^{1,5,6} , Randall K Julian Jr ^{1,7} , Andrew R Jones ^{1,3} , Weimin Zhu ^{1,2} , Rolf Apweiler ^{1,2} , Ruedi Aebersold ^{1,8} , Eric W Deutsch ^{1,9} , Michael J Dunn ¹⁰ , Albert J R Heck ¹¹ , Alexander Leitner ¹² , Marcus Macht ¹³ , Matthias Mann ¹⁴ , Lennart Martens ^{1,2} , Thomas A Neubert ¹⁵ , Scott D Patterson ¹⁶ , Peipei Ping ¹⁷ , Sean L Seymour ^{1,18} , Puneet Souda ¹⁹ , Akira Tsugita ²⁰ , Joel Vandekerckhove ²¹ , Thomas M Vondriska ²² , Julian P Whitelegge ¹⁹ , Marc R Wilkins ²³ , Ioannnis Xenarios ²⁴ , John R Yates III ²⁵ & Henning Hermjakob ^{1,2}			ndrew R rt J R Heck ¹¹ , D Patterson ¹⁶ , ondriska ²² ,	

State of the
fieldPredictive
AnalysisReporting
StandardsImplications
& Next Steps

Minimum Information about Nanomaterial Biocorona

Experimental design checklist for biocorona characterization Phase 1: ENM exposure to biofluids and ENM

characterization

- How can the biofluid be handled and stored to best reflect biological conditions?
- What is the most relevant and appropriate dosage of ENMs in the chosen biofluid or hypothesis?
- Does the study aim for analysis of the biocorona pre- or post-equilibrium? How was the timeline for equilibrium evaluated?
- Are replicates included? And, where possible, do plans include parallel processing of samples for proteomics and additional characterisation?

Phase 2: Isolation of absorbed biomolecules and preparation for analysis

- Is the biocorona separation thorough enough to remove all unbound biomolecules?
- Is the separation technique likely to alter the chemical structure of the biocorona, or the profile of biomolecules?
- Will the biocorona clean-up steps affect the profile of your biomolecules?
- What clean-up methods are likely to least alter the biocorona, e.g. through selective or pervasive protein loss?

Phase 3: separation of biomolecules and spectroscopic characterization

• What type of separation will be best for these samples (in gel, on-particle etc.)?

Experiments (MINBE)

- How can the protocol be modified to best maintain consistency across samples?
- What instruments are best for these samples and quantification?
- What controls can be included to check for protein identification and quantification?

Phase 4: Informatic identification of the biocorona population and analysis.

- What informatics database will be used for identifying the biomolecules?
- What kind of post-processing is required for quantification?
- What statistical analysis of the dataset can be used to assess data quality?
- How will the full dataset of biomolecules and their characteristics be organized, analysed, and presented?

State of the	Predictive	Reporting	Implications
field	Analysis	Standards	& Next Steps

Protein identific	ation and quantification [compare to MAIPE-MSI]	
Database	List the database used for protein identification, melduling version and any restrictions applied in the	
Accession	Accession numbers provide a unique identifier for each protein from the qu	eried database and serve
number	as the foundation for bioinformatic analyses. With the accession code, read	ders can query databases
	for any additional bioinformatic information required.	
- C - I		
	for any additional bioinformatic information required.	
Confidence in	 <u>% Coverage</u>: The percentage of the protein sequence covered. 	
protein	 <u>Number of peptides</u>: Total number of peptides detected for each protein, ideally 2 or more peptides 	
identification	for a confident identification.	
	• Number of unique peptides: Number of peptide sequences that are unique to the identified protein.	
	At least one required for a high degree of confidence in the identification.	
	• Missed cleavages: Number of missed cleavages in the protein or peptide sequence. A good indicator	
	of digestion efficiency, missed cleavages, should be kept to 2 or less for a confident identification.	
	• Protein probabilities and scores: Calculated probabilities or scores to give a sense of confidence in	-
	a protein identification.	tec
Validation	Statistical analysis or comparisons of replicates should be performed to assess data quality.	mit.
Quantification	Details on both the normalisation and quantification method required to enable accurate	nbu
	reproducibility between experiments. Often, label free quantification includes calculation of a	s la
	normalized spectral abundance factor (NSAF), which includes both the spectral count and length of	ets
	each protein.	d, e
Additional	Additional outputs often included: subcellular localization of the ENMs, amino acid sequence,	۲ ک
outputs	molecular weight, function, and other biophysical parameters for each protein.	etv
		28 <u> </u>
		C

The MINIBE team

Andrew Chetwynd

Iseult Lynch

Thank you!

<u>SCU proteomics / modeling team</u> Maryam Mobed-Miremadi (Bioengineering)

Rich Eigenheer (UC-Davis Proteomics)

Daniel Freitas

Matthew Findlay

Erick Castellanos

Alyssa Lampe

We Want You r Data!

Do you have ENM protein corona data we can test our model on?

Email: kwheeler@scu.edu