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How can we bridge the gap between 
and ?

Excellence in nano
R&D 

Profitable nano Industry 

Nanosafety ? 



http://portal.s2nano.org

Safe & Sustainable Nanotechnology Portal : 

A Toolbox for Nanomaterial Characterization & Safety Assessments

www.s2nano.org
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Prediction Models

User-Friendly Interface
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For Nanomaterials
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Characteristics of Nanosafety Data ? 

Small, Unbalanced, & Heterogeneous datasets 

with many missing values

How to overcome these complexities of data  ?

Comprehensive database with 

physicochemical & toxicity data of nanomaterials

Dataset curation based on the assessment of

data quality / completeness

Development of generalized prediction models with  

wider applicability domains



Model Development Workflow in S2NANO

Core Dataset from our Own Experiments

Extended Dataset from Literature Mining

- Info.DB, Mat.DB, QM DB, 

- PChem. DB, Tox DB (in vitro, in vivo, eco)., 



TEM / SEM

DLS / NTA

ICP-MS

Raman / Infrared

STXM

Experimental

: PChem

Measurement of Properties

Nanosafety database
www.s2nano.org

Core Dataset 

from our Own Experiments

- Core : PChem DB



MTT/ MTS

CCK-8

CellTiter-Glo

Data Collection - Experimental

Experimental

: in vitro Tox
Assessment of  in vitro toxicity

Nanosafety database
www.s2nano.org

Core Dataset 

from our Own Experiments

- Core : Tox(in vitro) DB



Selection of Articles 

on Nanosafety

Extraction of 
Nanoinformation

: Info/Mat/Pchem/Tox

Data Collection – Literature Mining

Literature Search

Nanosafety database
www.s2nano.org

Extended dataset 

from Literature Mining

- Info.DB, Mat.DB, QM DB, 

- PChem DB, Tox DB (in vitro, in vivo, eco)., 



Core & Extended dataset 

from Experiment & Literature Mining

- Info.DB, Mat.DB, QM DB, 

- PChem DB, Tox DB (in vitro, in vivo, eco)., 



Improve Data Quality via Scoring Methods

① Info
② Material
③ PChem
④ Toxicity

Collected Database



Model Development Workflow in S2NANO

Data Completeness (Missing Data Problem) 

Data Quality (Heterogeneous Source of Data)

Data Imbalance (NonToxic >> Toxic )



Data Preprocessing –Attribute Selection

Dose

PChem

In vitro Tox QM• Core Size

• Hydrodynamic Size

• Surface Charge

• Surface Area

• Measurement 
Methods for Each 
PChem Attributes

• Assay

• Type/Name/ 
Species/Origin 
of Cell-line

• Exposure time

• Cell Viability

• Formation enthalpy
Hsf (eV)

• Conduction band energy 
Ec (eV)

• Valence band energy
Ev (eV) 

• Electronegativity
MeO (eV)

Nanosafety database
www.s2nano.org



Data Preprocessing –Original Dataset (Dataset I)

• 216 articles 
selected from 
~600 pdf files

• 26 oxide NPs

• 6,842 data rows

• Total 20 attributes, but only 14 attributes were used as Descriptors

• Dose(1) / Pchem(8) / Tox(7) / QM(4) attributes

• Measurement Methods attributes were not used for Model development (-4)

• Cell name attribute was not used for Model development (-1)

• Cell Viability was used for Toxic/Non-Toxic Endpoint (-1)

• Toxic/Non-Toxic as Endoint

• Toxic when Cell Viability < 50 %

• NonToxic when Cell Viability ≥ 50 %



Quality & Completeness Assessment, 

Data Gap Filling and PChem score based Screening

• Missing Data in Oxide NPs’ Original Dataset  (Dataset I)

• 18 % of Core Size Data 

• 39 % of Hydrodynamic Size Data

• 41 % of Surface Charge Data

• 74 % of Specific Surface Area Data



Missing data replacement

Conventional Approach

- substitute missing values with mean values of non-missing 
values

Nano Read Across

- estimation from other properties of the same nanomaterials 
(e.g., estimating specific surface area from core size). 

- information form manufacturer’s specification sheet or other 
references using the same nanomaterials 

Data Gap Filling Method  – Nano Read-Across



Phem Data Quality Score based Screening

Trinh et al (2018) (IF = 6.047)



Choi et al (2018) Data Imbalance Issue

Toxic 16% : Nontoxic 84 %

SMOTE (Synthetic Minority Over-sampling TEchnique )

ID (Imbalanced Data) vs. BD (Balanced Data)

❑ SMOTE (Synthetic minority over-sampling technique)

k=3

Minority sample

Synthetic sample

Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: synthetic minority over-sampling technique. Journal of artificial intelligence 

research, 16, 321-357.



PredictNANO > Datasets

Download Dataset

Curated Datasets

Details on Dataset



Model Development Workflow in S2NANO

Logistic Regression Algorithm

Random Forest Algorithm

Support Vector Machine Algorithm

Backpropagation Algorithm



Model Development – Algorithm Selection



Model validation 

Validation Dataset Purpose

Internal validation 

(10 fold cross validation)

Training set

(normalized by each 

method)

Balanced training set

(by SMOTE)

1. Select the normalization method appropriate for each modeling algorithm

2. Look at SMOTE effect

External validation Test set -
1. Look at SMOTE effect

2. Select the best predictive model

Reliability validation

Cytotoxicity data 

measured by 

experiment

- Validate the reliability of the best predictive model

Model Development – Validation (Internal & External)

Performance measures

True condition

Accuracy =
TP + TN

TP + FN + FP + TN

Balanced accuracy

=
1

2
(

TP

TP + FP
+

TN

FN + TN
)

positive

toxic

negative

nontoxic

Predicted 

condition

positive

toxic
True Positive (TP) False Negative (FN)

negative

nontoxic
False Positive (FP) True Negative (TN)

Sensitivity =
TP

TP + FP
Specificity =

TN

FN + TN

Model Development – Performance Measures
Choi et al (2018) 



Choi et al (2018) Normalization Method

Algorithm Normalization method
True 

positive

False 

positive

False 

negative

True 

negative
Sensitivity Specificity

Balanced 

accuracy

Standard deviation

Sensitivity Specificity
Balanced 

accuracy

LR

min-max 39 12 16 278 70.91% 95.86% 83.39% 4.84% 1.18% 2.45%

z-score 39 12 16 278 70.91% 95.86% 83.39% 4.84% 1.58% 2.47%

log 46 11 9 279 83.64% 96.21% 89.92% 4.45% 1.01% 2.33%

combination 45 8 10 282 81.82% 97.24% 89.53% 3.99% 1.15% 3.99%

SVM

min-max 28 6 27 284 50.91% 97.93% 74.42% 10.07% 0.72% 5.04%

z-score 29 7 26 283 52.73% 97.59% 75.16% 9.73% 0.35% 4.87%

log 40 5 15 285 72.73% 98.28% 85.50% 5.48% 0.65% 2.65%

combination 41 5 14 285 74.55% 98.28% 86.41% 5.48% 0.67% 2.73%

RF

min-max 45 5 10 285 81.82% 98.28% 90.05% 5.71% 0.64% 2.92%

z-score 44 5 11 285 80.00% 98.28% 89.14% 4.32% 0.67% 2.25%

log 45 5 10 285 81.82% 98.28% 90.05% 5.02% 0.61% 2.49%

combination 45 5 10 285 81.82% 98.28% 90.05% 4.93% 0.61% 2.44%

ANN

min-max 38 15 17 275 69.09% 94.83% 81.96% 15.31% 1.07% 7.79%

z-score 40 6 15 284 72.73% 97.93% 85.33% 5.89% 0.60% 2.98%

log 43 8 12 282 78.18% 97.24% 87.71% 6.00% 0.64% 3.01%

combination 48 8 7 282 87.27% 97.24% 92.26% 4.05% 0.66% 2.11%



Choi et al (2018) Data Imbalance Issue

Normalization 

method
Algorithm Data

True 

positive

False 

positive

False 

negative

True 

negative
Sensitivity Specificity

Balanced 

accuracy

Standard deviation

Sensitivity Specificity
Balanced 

accuracy

Log LR
ID 46 11 9 279 83.64% 96.21% 89.92% 4.45% 1.01% 2.33%

BD 243 27 18 234 93.10% 89.66% 91.38% 5.84% 9.31% 7.25%

Combination SVM
ID 41 5 14 285 74.55% 98.28% 86.41% 5.48% 0.67% 2.73%

BD 255 7 6 254 97.70% 97.32% 97.51% 1.15% 0.98% 0.56%

Combination RF
ID 45 5 10 285 81.82% 98.28% 90.05% 4.93% 0.61% 2.44%

BD 253 4 8 257 96.93% 98.47% 97.70% 0.88% 0.72% 0.63%

Combination ANN
ID 48 8 7 282 87.27% 97.24% 92.26% 4.05% 0.66% 2.11%

BD 258 5 3 256 98.85% 98.08% 98.47% 0.79% 0.85% 0.75%

Toxic 16% : Nontoxic 84 %

SMOTE (Synthetic Minority Over-sampling TEchnique )

ID (Imbalanced Data) vs. BD (Balanced Data)



Choi et al (2018) 

Normalization 

method
Algorithm Data

True 

positive

False 

positive

False 

negative

True 

negative
Sensitivity Specificity

Balanced 

accuracy

Standard deviation

Sensitivity Specificity
Balanced 

accuracy

Log LR
ID 25 6 4 194 86.21% 97.00% 91.60% 7.95% 0.70% 3.86%

BD 26 21 3 179 89.66% 89.50% 89.58% 9.10% 7.49% 5.46%

Combination SVM
ID 22 5 7 195 75.86% 97.50% 86.68% 11.64% 1.06% 5.71%

BD 25 10 4 190 86.21% 95.00% 90.60% 8.85% 1.85% 3.79%

Combination RF
ID 24 3 5 197 82.76% 98.50% 90.63% 12.75% 1.12% 6.23%

BD 25 9 4 191 86.21% 95.50% 90.85% 11.24% 1.84% 5.84%

Combination ANN
ID 23 4 6 196 79.31% 98.00% 88.66% 8.74% 1.42% 4.42%

BD 27 13 2 187 93.10% 93.50% 93.30% 6.41% 0.83% 3.08%

External validation

Normalization 

method
Algorithm Data

True 

positive

False 

positive

False 

negative

True 

negative
Sensitivity Specificity

Balanced 

accuracy

Standard deviation

Sensitivity Specificity
Balanced 

accuracy

Log LR
ID 46 11 9 279 83.64% 96.21% 89.92% 4.45% 1.01% 2.33%

BD 243 27 18 234 93.10% 89.66% 91.38% 5.84% 9.31% 7.25%

Combination SVM
ID 41 5 14 285 74.55% 98.28% 86.41% 5.48% 0.67% 2.73%

BD 255 7 6 254 97.70% 97.32% 97.51% 1.15% 0.98% 0.56%

Combination RF
ID 45 5 10 285 81.82% 98.28% 90.05% 4.93% 0.61% 2.44%

BD 253 4 8 257 96.93% 98.47% 97.70% 0.88% 0.72% 0.63%

Combination ANN
ID 48 8 7 282 87.27% 97.24% 92.26% 4.05% 0.66% 2.11%

BD 258 5 3 256 98.85% 98.08% 98.47% 0.79% 0.85% 0.75%

Internal vs. External Validations

Internal validation



Trinh et al (2018) ( Impact Factor  = 6.047)

Choi et al (2018) 
(Impact Factor 

= 4.259)

Performance Comparisons of 
nanoSAR classification Models

Choi et al. (2018) Chemosphere



PredictNANO > Models

Details on Each Prediction Models

Toxicity Prediction Datawarehouse

Prediction Models



Go “Safety Screening”

Material Group : Oxides

Material : ZnO

Core Size

Hydrodynamic Size

Surface Charge

Mass Dose



Model Development Workflow in S2NANO

Relative Importance of Attributes

Applicability Domains



Attribute Importance

Choi et al (2018) 

Trinh et al (2018) ( Impact Factor  = 6.047)



Applicability Domains of Models

Trinh et al (2018)



other safety indexes

Description of Screening Models

Datawarehouse with 
User-Friendly 

Interfaces



Raw Data = 33,393 rows

Quality Screened  Datasets = 16

Prediction Models = 13

User-Friendly Interface

Implementation of Collected Database, Curated Datasets and 

nanoSAR classification models in S2NANO portal.



Excellence in nano R&D 

Profitable nano Industry 

Comprehensive 
Database Curated Datasets

Prediction Models User-friendly 
Interface

➢ To overcome current issues in nanosafety data, such as small, unbalanced, & heterogeneous

datasets with many missing values, we have collected a comprehensive nanosafety database

(S2NANO) from experiments as well as literature mining. ( 33,393 rows of raw data were

collected)

➢ These data were further processed and 16 quality screened datasets were curated : Data

gap-filled with nano read-across methods and assessed their data quality / completeness

based on Pchem score. Using these curated datasets, 13 prediction models were developed

with different algorithms (LR, SVM, RF, ANN) and validated internally & externally.

➢ These comprehensive database, curated datasets, and nanosafety prediction models were

implemented in S2NANO portal with user-friendly interfaces for future applications in safety by

designand regulation compliance.

SUMMARY



http://portal.s2nano.org

NanoSolveIT
Nanoprediction Toolbox

Measurements & Models
for Nanomaterials

Predictive Models

Measurement 
Techniques



In the case of ‘‘classic’’ QSPR/QSAR analysis the paradigm is the following: 

→ Endpoint is a mathematical function of molecular structure

Endpoint = Mathematical function (Molecular structure)

SMILES

[Problem] In the case of nanomaterials, the molecular structures of nanomaterials is the same as bulk chemicals

QSAR

QSAR vs Quasi-QSAR

Ref. Toropova, Alla P., and Andrey A. Toropov. "Optimal descriptor as a translator of eclectic information into the prediction of membrane damage by means of various TiO 2 nanoparticles." Chemosphere 93.10 (2013): 2650-2655.
Ref. Toropov, Andrey A., Robert Rallo, and Alla P. Toropova. "Use of quasi-SMILES and Monte Carlo optimization to develop quantitative feature property/activity relationships (QFPR/QFAR) for nanomaterials." Current topics in medicinal 
chemistry 15.18 (2015): 1837-1844.

Physicochemical characteristics

Biochemical conditions

Quasi-QSAR

*Various conditions and characteristics of nanomaterial 

could impact associated biochemical endpoints!

Quasi-SMILES

Endpoint = Mathematical function (Eclectic data)

Physicochemical characteristics

Biochemical conditions

[Solution] replace the traditional paradigm with by fresh paradigm



For 20 MWCNTs, both HCA and Normalization showed good prediction results and 

HCA (R2: 0.83-0.91) outperformed Normalization (R2 0.70-0.78)

For 21 MOs, HCA (R2: 0.76-0.81) highly outperformed Normalization 

(R2: 046.-0.50)

Nano-QSARs based on quasi-SMILES were successfully developed for different   

MWCNTs and MOs by using HCA

The studies showed a potential of quasi-SMILES employing HCA  overcomes the 

limitation in developing Nano-QSARs (i.e. increasing applicability domains of models)

Model Development – Performance Measures

Quasi-QSAR Modelling
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Model Interpretation : Attribute Importance

❑ Mann-Whitney-Wilcoxon-test (also called the Wilcoxon rank-sum test) H0 : the distributions are the same

H1 : the distributions are not the same

❑ Relative importance

𝑅𝐼𝑥 = 

𝑦=1

𝑚

𝑤𝑥𝑦𝑤𝑦𝑧

-0.8604

-5.2075

2.0158

1.5145

𝑥1

𝑥2

𝑅𝐼(𝑥=1) = 

𝑦=1

𝑚=2

𝑤𝑥𝑦𝑤𝑦𝑧

= −0.8604 ∗ −5.2075 + 1.0651 ∗ 2.0158 = 6.6276

Ibrahim, O. M. "A comparison of methods for assessing the relative importance of input variables in artificial neural networks." Journal of Applied 

Sciences Research 9.11 (2013): 5692-5700.



Model Interpretation : Applicability Domain

❑ KNN-based applicability domain

Tropsha, Alexander, Paola Gramatica, and Vijay K. Gombar. "The importance of being earnest: validation is the absolute essential for successful 

application and interpretation of QSPR models." Molecular Informatics 22.1 (2003): 69-77.

<𝐃k> : average Euclidian distance between each compound of the 

training set and its k nearest neighbors in the descriptors space.

𝐬k: standard deviation of the distances between each compound of 

the training set and its k nearest neighbors in the descriptors space.

𝐃𝑖: the average of the distances between i and its k nearest 

neighbors in the training set. 

𝐃𝑖 ≤< 𝐃k > +𝐙 × 𝐬k

The new compound will be predicted by the model, only if:

With Z, an empirical parameter(0.5 by default)

1

New compound

k=2

Training data

2


