Some thoughts on our progress in defining and advancing nanoinformatics

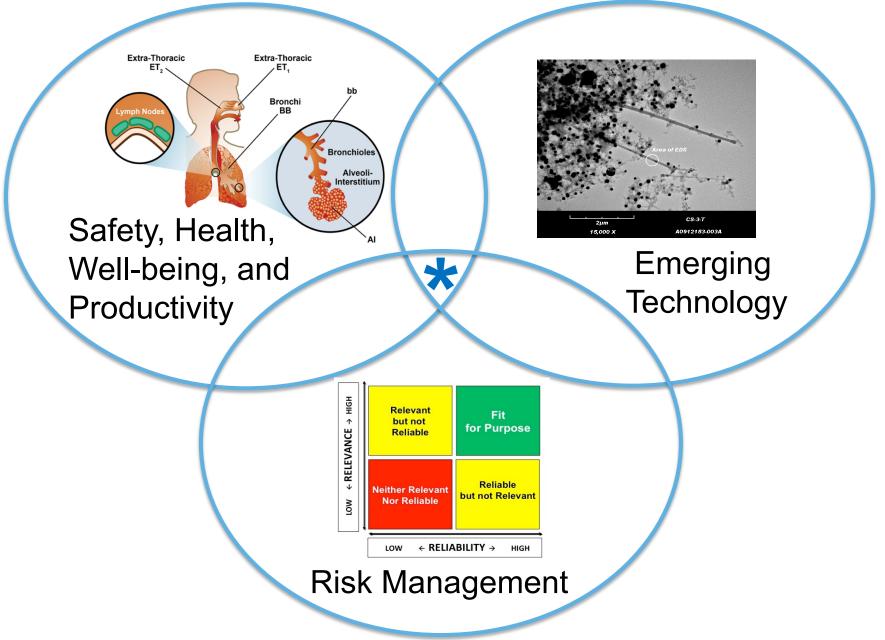
Nano WG discussion

November 1, 2018

Mark D. Hoover, PHD, CHP, CIH

<u>mhoover1@cdc.gov</u> National Institute for Occupational Safety and Health Morgantown, West Virginia markdhoover@comcast.net

304-685-2991 Morgantown, West Virginia (Jan 1, 2019)



The findings and conclusions in this presentation are those of the

author and do not necessarily represent the views of his organization. Mention of company names or products does not constitute endorsement.

Our Goal is to foster Robust Decisions to Reduce Risk and Maximize Societal Benefit

An Informatics Approach - Our 'nano' Working Definition

- The science and practice of setting relevant objectives and determining which information is relevant to protecting worker safety, health, wellbeing, and productivity,
- and then developing and implementing effective mechanisms
- to collect, validate, store, share, analyze, model, and apply the information, and then to confirm achievement of the intended outcome from use of that information,
- and finally conveying experience to the broader community, contributing to generalized knowledge, and updating standards and training.

Adapted from <u>http://www.internano.org/nanoinformatics/</u> and Hoover et al. 2015

Some Interdisciplinary Citations that shared our Nanoinformatics Message

- Maiello, M.L. and M.D. Hoover (editors), *Radioactive Air Sampling Methods*, CRC Press, Boca Raton, FL, 2010.
- de la Iglesia, D., S. Harper, M.D. Hoover, F. Klaessig, P. Lippell, B. Maddux, J. Morse, A. Nel, K. Rajan, R. Reznik-Zellen, M.T. Tuominen. *Nanoinformatics 2020 Roadmap*, 2011. <u>http://eprints.internano.org/607/</u>.
- Hoover, M.D., L.J. Cash, S.M. Mathews, I.L. Feitshans, J. Iskander, and S.L. Harper: 'Toxic' and 'Nontoxic': Confirming Critical Terminology Concepts and Context for Clear Communication, in *Encyclopedia of Toxicology*, 3rd edition (P. Wexler, ed), Elsevier, Oxford, Vol. 4, pp. 610–616, 2014.
- Hoover, M.D., D.S. Myers, L.J. Cash, R.A. Guilmette, W.G. Kreyling, G. Oberdörster, R. Smith, J.R. Cassata, B.B. Boecker, and M.P. Grissom. Application of an informatics-based decision-making framework and process to the assessment of radiation safety in nanotechnology, *Health Phys J.*, 108(2): 179-194, 2015.
- Hoover, M.D., D.S. Myers, L.J. Cash, R.A. Guilmette, W.G. Kreyling, G. Oberdörster, R. Smith, and M.P. Grissom: *Radiation Safety Aspects of Nanotechnology*. NCRP Report No. 176, National Council on Radiation Protection and Measurements, Bethesda, MD, 2017.

Shared Message Citations (continued)

- Woodall, G.M. et al.: Interpreting Mobile and Handheld Air Quality Sensor Readings in Relation to Air Quality Standards and Health Effect Reference Values: Challenges and Promising Tools, Atmosphere, 8(10):182, 2017.
- Hoover, M.D. and L.J. Cash: Plutonium Aerosol Informatics: Update on Understanding, Communicating, and Managing Radiation Safety in Plutonium Science, *Health Phys. J.* 115(1): S99-S100, 2018.
- Hoover, M.D. and L.J. Cash: Plutonium Aerosol Informatics: Update on Understanding, Communicating, and Managing Radiation Safety in Plutonium Science, In Proc. Plutonium Futures: The Science 2018, American Nuclear Society, La Grange Park, IL, in press.
- Hoover, M.D., L.J. Cash, I.L. Feitshans, C.O. Hendren, and S.L. Harper. A Nanoinformatics Approach to Safety, Health, Well-being, and Productivity, Chapter 5, in Nanotechnology Environmental Health and Safety: Risks, *Regulation, and Management*, 3rd edition, M.S. Hull and D.M. Bowman, eds, Elsevier, Oxford, 2018.
- Hoover, M.D. and L.J. Cash. Plutonium Aerosol Characterization and Safety Issues, in *The Plutonium Handbook*, 2nd edition, D.L. Clark, D.A. Geeson, and R.J. Hanrahan, Jr., eds, American Nuclear Society Press, La Grange Park, IL, in press.

A Matrix View of "Who we are" and "What we need"

	Workers	Health and safety practitioners	Managers	Policy makers and regulators	Equipment and facility providers	Materials suppliers	Financiers	Insurers	Legal community	Researchers	Educators	Students	Emergency Responders	Media	Consumers	Society
Literacy and																
Critical																
Thinking Skills																
Real Life																
Examples																
Understanding																
(not rote																
application)																
Continuous																
Improvement																
Modeling																
and Sharing																
Assessment																

Specific messaging and actions in each element of the matrix must be based on (a) what knowledge and understanding each stakeholder needs and (b) what knowledge and understanding each stakeholder can provide.

Nanoinformatics 2020 Roadmap and Hoover et al. 2014

Informatics Roles and Responsibilities

2 3												
Let &	1				5		36		6	- Ja		
Methods and Data Customers			Meth and Crea	Data		Methods and Data Curators			Methods and Data Analysts			
							4			7		
	Set Mission Objectives	Determine Relevance	Collect	Validate	Store	Share	Analyze and Model	Apply	Confirm Effectiveness	Convey Experience	Generalize	Update Guidance
Customers	Х	X						Х	Х	Х	Х	X
Creators		Х	Х	Х					Х			X
Curators		Х		Х	Х	Х			Х			X
Analysts		Х		Х			Х		Х		Х	X

Thoughts on getting the right things done right

 If money is being spent to reduce an already minuscule risk, while larger risks are going unaddressed, that is not only foolish; it is in effect an unsafe act.

Kaplan, Stan (1991) Risk Assessment and Risk Management – Basic Concepts and Terminology. In Risk Management: Expanding Horizons in Nuclear Power and Other Industries. R.A. Knief, V.B. Briant, R.B. Lee, R.L. Long, and J.A. Mahn, eds., Hemisphere Publishing, New York.

 The *method* is not the message; [the message] is in the *managerial frame of mind determined* to make *robust decisions*.

Zebroski, E.L. (1991) Lessons Learned from Man-Made Catastrophes. In Risk Management: Expanding Horizons in Nuclear Power and Other Industries. R.A. Knief, V.B. Briant, R.B. Lee, R.L. Long, and J.A. Mahn, eds., Hemisphere Publishing, New York.

Two Theorems on Communication

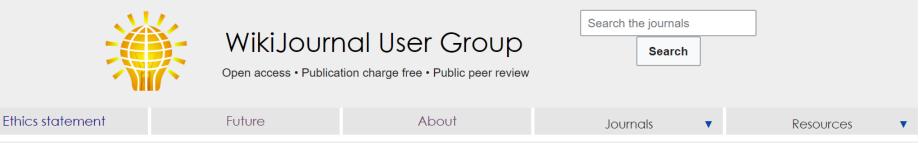

Theorem 1: 50% of the problems in the world result from people using the same words with different meanings.

Theorem 2: The other 50% come from people using different words with the same meaning.

Kaplan, Stan (1991) Risk Assessment and Risk Management – Basic Concepts and Terminology. In Risk Management: Expanding Horizons in Nuclear Power and Other Industries. R.A. Knief, V.B. Briant, R.B. Lee, R.L. Long, and J.A. Mahn, eds., Hemisphere Publishing, New York.

How to Get the Right Things Done Right

- Make it easier for everyone to get the right things done right for the health of individuals, organizations, and society
- by helping to build and sustain connected, protected, and respected communities
- of leaders, cultures, and systems that have all the tools, training, and experience needed
- to anticipate and recognize hazards, evaluate exposures, and control and confirm protection from risks to safety, health, well-being, and productivity
- in all the places we live, learn, work, and play.


How should we tailor our outreach and engagement?

- Conferences
- Publications
- Work groups
- Interdisciplinary collaborations (like nano OESH and nanomedicine
- Wikipedia opportunities
- •

Special thanks to Thais Morata and John Sadowski for their help with the following 12 slide materials on Wikipedia opportunities.

An additional opportunity for us

WikiJournals

The WikiJournal User Group publish a set of open-access, peer-reviewed academic journals with no publishing costs to authors. Its goal is to provide free, quality-assured knowledge. Secondly, it aims to bridge the Academia-Wikipedia gap by enabling expert contributions in the traditional academic publishing format to improve Wikipedia content.

Discussion forums

Discussion of the projects is encouraged. The forum for the publishing group is here, and each journal has its own additional discussion page.

The journal group is also currently applying to be a Wikimedia Foundation Sister Project. This would give greater control over the workings and formatting of the site, as well a dedicated domain name.

How might we get involved more?

- Become familiarized with the Wiki Journals and consider publishing
- Consider encouraging our colleagues to take training or contributing to Wikipedia
- Consider disseminating this effort among our partners and in particular those <u>in Universities</u> to try to the platform from the Wiki Education Foundation <u>https://wikiedu.org/</u>
- Join the WikiProject on occupational safety and health and post a request

https://en.wikipedia.org/wiki/Wikipedia:WikiProject_Occupational_ Safety_and_Health

- Contact the NIOSH resident wikipedian John Sadowski (jsadowski@cdc.gov) for more information.
- Consider promoting an editing workshop (Edit-a-thon). NIOSH staff have been involved in promoting events or contributing edits and they can share their experiences

Department of Health and Human Services Centers for Disease Control and Prevention National Institute for Occupational Safety and Health

NIOSH Science Blog

Home	
Posts by Category	-
Posts by Month	
About This Site	

Search the blog

Search for-

Search ...

Search

Categories

Expanding and Improving Occupational Safety and Health Content in Wikipedia. It Matters.

Posted on July 23, 2018 by Max Lum, Thais C. Morata, James Hare, and John P. Sadowski

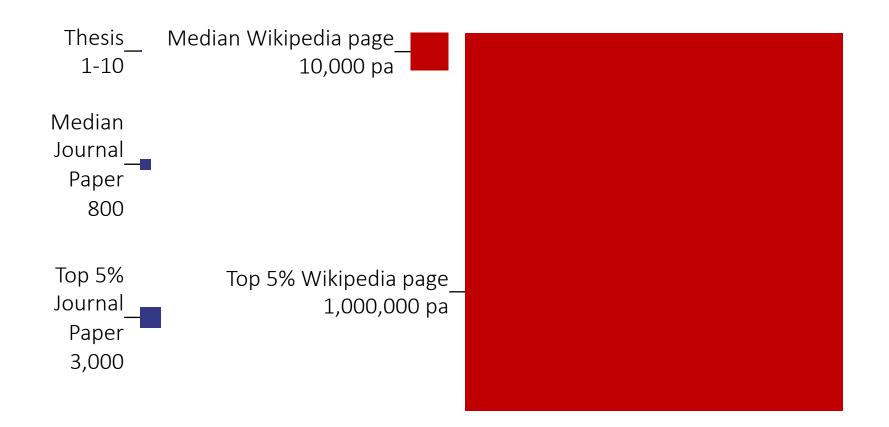
Image by NIOSH

NIOSH is one of the first US federal agencies to collaborate with the Wikimedia organizations and it is doing so by actively contributing data and the latest research to help improve the health of the population. NIOSH's effort involves examining mechanisms to help make sure that the occupational safety and health information that reaches Wikipedia's millions of readers is complete, up-to-date, and free of errors.

The January 2017 NIOSH eNews article <u>Reaching Our</u> <u>Audience Where They Are: Our Work with Wikipedia</u> describes the motivation behind NIOSH's efforts to expand and improve occupational safety and health content in Wikipedia. Wikipedia

https://blogs.cdc.gov/niosh-science-blog/2018/07/23/osh-wikipedia/

A WikiProject dedicated to improving Wikipedia content on occupational safety and health.


https://en.wikipedia.org/wiki/Wikipedia:WikiProject_Occupational_Safety_and_H ealth

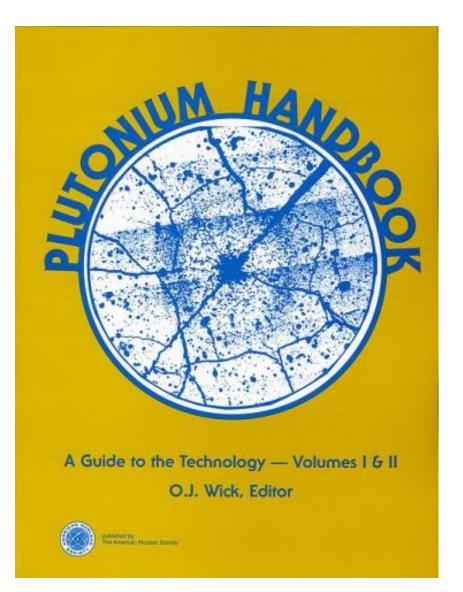
Department of Health and Human Services Centers for Disease Control and Prevention National Institute for Occupational Safety and Health

WHO READS WIKIPEDIA?

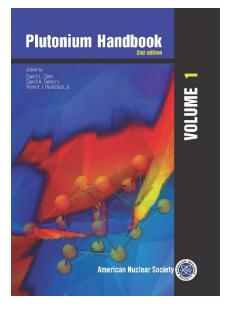
ARTICLE QUALITY: EXTERNAL REVIEW

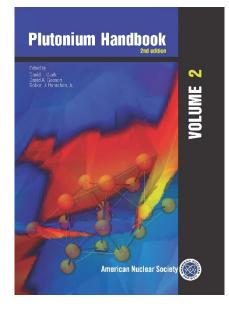
- Quality comparable to encyclopedia Britannica even back in 2005
- Accuracy varies by topic, but broad trends:

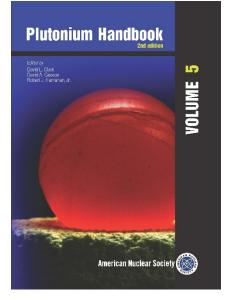
Inconsistent coverage Missing / out of date information Missing illustration Difficult readability

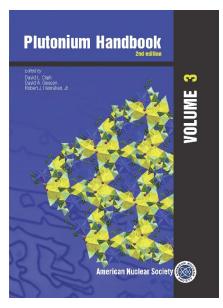

- Accuracy has immediate, real-world impact
 Internet medical data influences the healthcare decisions of >50% of readers
 Many articles are read a million times per year
- Yet is has been consistently difficult to engage academics, experts and health professionals

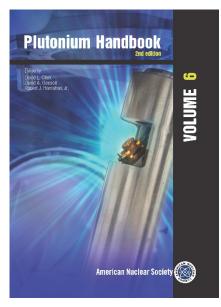
Department of Health and Human Services Centers for Disease Control and Prevention National Institute for Occupational Safety and Health


The Historic 1st Edition of the Plutonium is nearly 50


- It has been nearly fifty years since the 1980 publication of the original Plutonium Handbook.
- It contained 966
 pages of
 authoritative
 information on
 plutonium research.


http://www.ans.org/pubs/handbooks/plutonium/


The 2nd Edition of the Plutonium Handbook is in press



http://www.ans.org/pubs/handbooks/plutonium/

THOUSANDS of pages

2nd Edition of the Plutonium Handbook Topics

- The discovery of plutonium,
- Properties of plutonium isotopes,
- Chemistry and properties of plutonium metal and alloys,
- Plutonium aging,
- Thermodynamic trends of plutonium,
- Plutonium in nuclear fuels,
- Waste forms,
- Heat sources,
- Packaging, storing, and transportation of plutonium,
- Nuclear security and safeguards, and
- Techniques for working safely with plutonium.

Our chapter 37 on plutonium aerosols is in Volume 5

Clark

Geeson

Hanrahan, Jr.

Fifty years after publication of the original Plutonium Handbook, this timely and authoritative second edition provides unparalleled coverage of plutonium research. With authorship from twelve countries, this scholarly collaboration brings together an international community of researchers from academia, national laboratories, and research institutions.

VOLUME 5

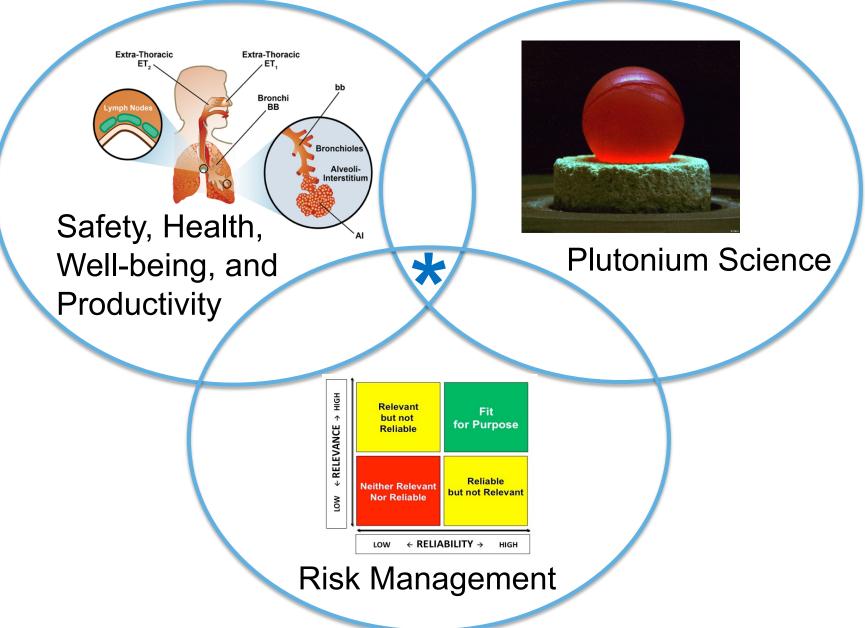
Volume 5 describes the applications of plutonium materials in nuclear fuels, wasteforms, and space power generation and the considerations of safety and security in plutonium research.

Glowing red sphere of a 100-watt "PU heat source used in adjoinsotope thermoelectric generators employed in the Voyager space missions (ploto Los Aamos National Laboator)) Astronaut Alan L. Bean removing the Apollo Lunar Sufface Experiments Package from the Lunar Module (photo. Alan L. Bean, NASA) Plutonium Handboo

Plutonium Handbook

American Nuclear Society

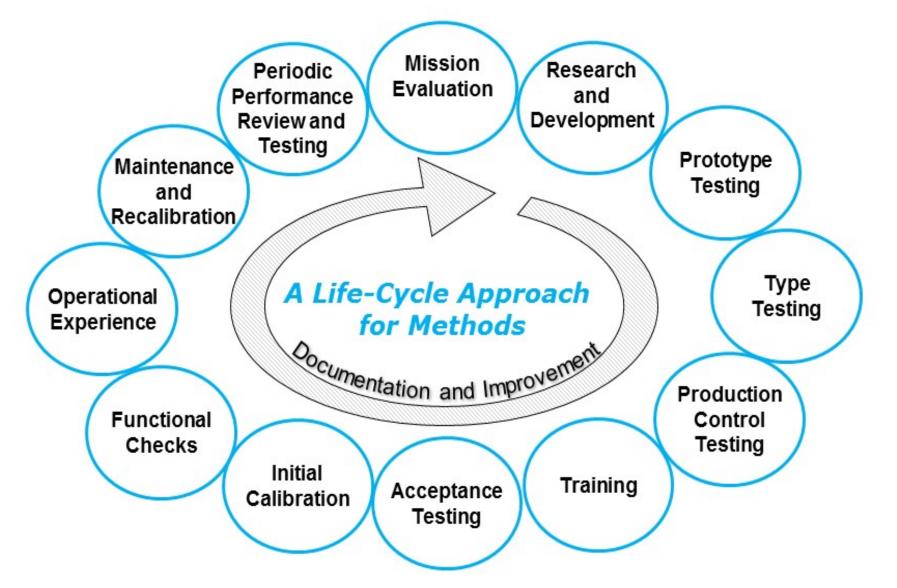
Edited by David L. Clark David A. Geeson Robert J. Hanrahan, Jr.

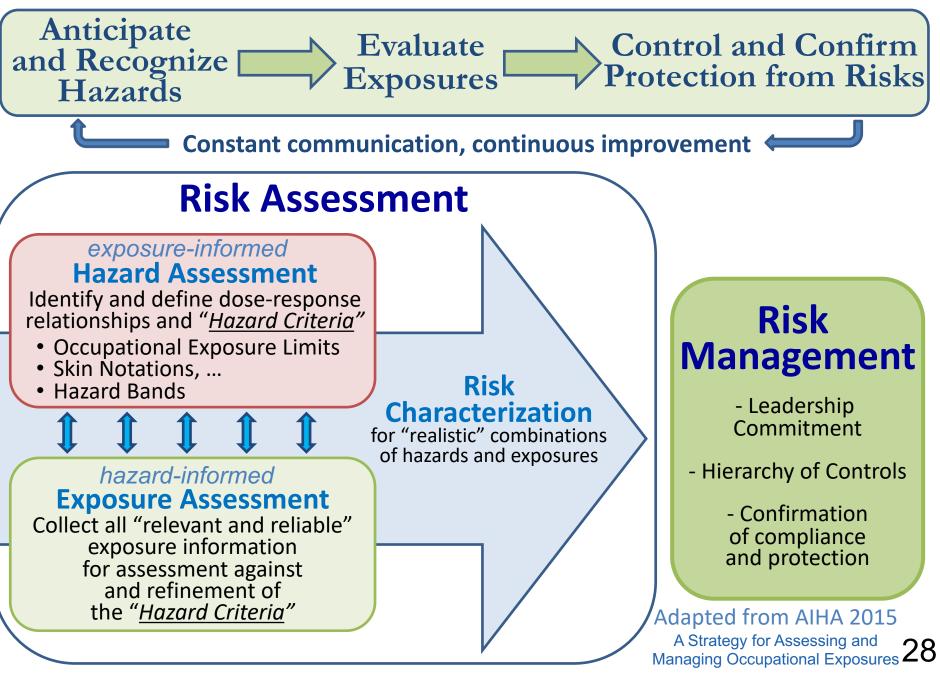

VOLUME 5

http://www.ans.org/pubs/handbooks/plutonium/

Chapter 37: Plutonium Aerosol Characterization and Safety Issues

- 1. Introduction
- 2. Key Concepts for Understanding Plutonium Aerosol Properties and Behaviors
- **3. Sampling and Characterization Methods** for Plutonium Aerosols
- 4. A Comprehensive Approach to Selection and Use of Sampling and Characterization Methods
- 5. An Organized Framework and Process for **Decision-making**
- 6. Conclusions
- 7. Acknowledgments
- 8. References


Convergence to meet our objectives


Graded Approach to Sampling

Level 0	Level 1	Level 2	Level 3
Prioritization of Sampling Needs	Initial Screening and Detection	Comprehensive Characterization and Assessment	Routine Monitoring and Control
 Process knowledge Work flows Anticipated or recognized hazards and potentials for exposure 	 Process knowledge Gross mass or activity counting Optical particle counting Condensation particle counting Microscopy 	 Composition Elemental and chemical Particle size Physical, aerodynamic, thermodynamic, electrical mobility Concentration Peak, mean, variability Biophysical factors Shape, surface area, solubility Other factors relevant to the assessment 	 A necessary and sufficient subset of Level 1 and Level 2 methods for the material and situation of interest

Lifecycle Approach to Methods

The IH Decision-making Framework and Process

Adapted from Hoover and Cash, 2018

Adapted from Hoover and Cash, 2018

A Valuable Safety Message

A Complementary Message for Total Safety, Health, and Well-being

While using TAKE2 \$40 for safety at work, also take a few moments each day to: Minimize stress. Choose healthy foods. Get some exercise. Ensure adequate rest. Get support when needed.

GO FOR TOTAL WELL-BEING !

Adapted by Hoover and Cash, 2012, from the Los Alamos National Laboratory, Worker Safety and Security Team

Questions and Discussion

Current: Mark D. Hoover, PhD, CHP, CIH Respiratory Health Division National Institute for Occupational Safety and Health Centers for Disease Control and Prevention 1095 Willowdale Road Morgantown, West Virginia 26505-2888 Phone: **304-285-6374**

Email: mhoover1@cdc.gov

Starting January 1, 2019 Mark D. Hoover, PhD, CHP, CIH 7 Cedarwood Drive Morgantown, West Virginia 26505-3525 Phone: **304-685-2991**

Email: markdhoover@Comcast.net