ISA-TAB-Nano-Expanded: Community-Sourced Updated Templates

Thursday September 21st, 2017 NanoWG

Nancy Birkner, Ph.D. Postdoctoral Associate Center for the Environmental Implications of NanoTechnology Pratt School of Engineering Duke University Durham, NC 27708

TIK UNIVERSITY OF KENTUCKY

BAYLOR

UNIVERSITY

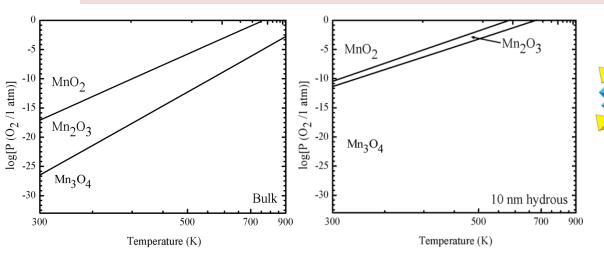
HOWARD

UNIVERSITY

UirginiaTech

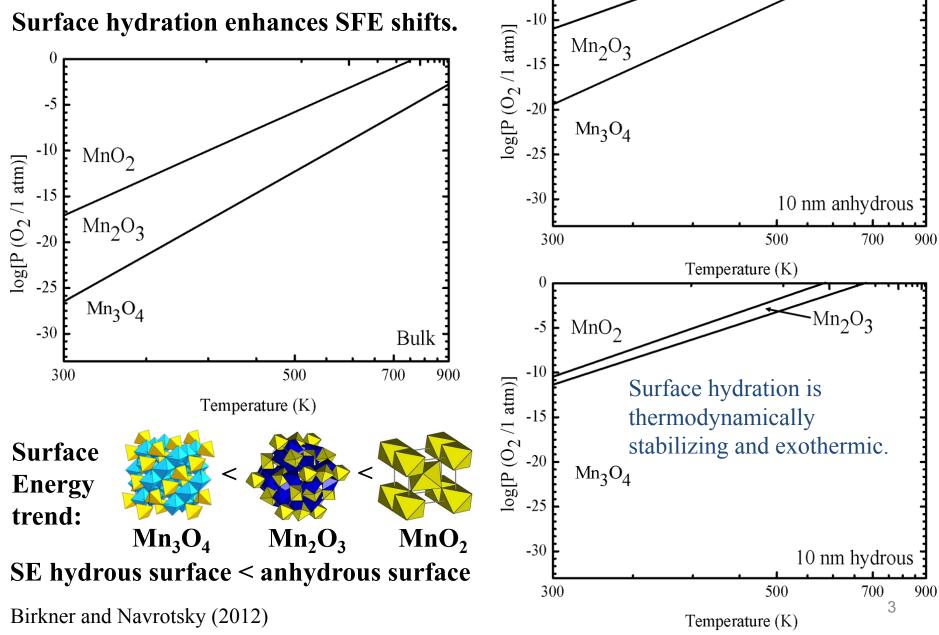
ISA-TAB Nano Extension

Carnegie Mellon


Issue: Nanophase transition metal oxides show large thermodynamically driven shifts in oxidation–reduction equilibria

- Spinels, M_3O_4 , have lower surface energies than divalent oxides MO and trivalent oxides M_2O_3 , which expands the spinel stability field.
- At the nanoscale, dramatic Gibbs free-energy shifts occur for metal oxides that are not expected of coarse particles based on bulk-scale thermodynamics
- These trends may be a general phenomena of all metal oxide systems

Navrotsky A, Ma C, Lilova K, Birkner N (2010) Science.


Birkner and Navrotsky (2012).

Surface free energy (SFE) shift favors the nanophase of lower surface energy. Surface hydration enhances SFE shifts.

0

-5

 MnO_2

Issue: What needed to be updated

Nanomaterial prior to experiment exposure, for example:

- Synthesis or purchased
- Mineral phase ID
- Nascent characteristics/behavior relevant to the assay (size, potential, surface chemistry, shape, crystal system...)
- Material state changes (dry to wet or wet to dry) of the nascent nanomaterial prior to experiment exposure
- Experiment conditions to which the nanomaterial is exposed, for example:
 - Media content
 - Experiment conditions (T, stirring, columns, duration...)
- Post-processing of exposed nanomaterial (if relevant), e.g.:
 - Material state changes (dry to wet or wet to dry) of the nanomaterial after experiment exposure

Minimum parameters needed for a specific assay

Locations of ISA-TAB-Nano-Extended Templates

CEINT ISA-TAB-Nano-Extended webpage location: https://ceint.duke.edu/research/nikc/isa-tab-nano

Functional Assay Templates

(Of note, these are the Alpha affinity and Dissolution templates)

Physical-Chemical Characterization Templates

in vivo Mammalian Toxicity Templates

in vitro Mammalian Toxicity Templates

Where are We Now & What's Next

- Suggested comment collection was completed
- Development of additional physical-chemical templates (Alpha and Dissolution) was completed.
- Data input into our Alpha and Dissolution templates was tested by collaborators
 - Minimum amount of experiment parameter input for each assay was found
 - Maximum amount depends upon the experiment design; templates may be further modified as needed by experimenters
- Nanomaterial instances are indicated in the experiment exposure section as this is where the variables are located
- It's time to hand off the baton to ASTM
- Beyond data collection...

Image: http://pratt.duke.edu/about/news/setting-ground-rules-nanotechnology-research

