



## **Computational Approaches to Unravel Immune Receptor Sequencing**

Li Zhang Professor of Biostatistics Department of Medicine Department of Epidemiology and Biostatistics HDFCCC Biostatistics Core University of California San Francisco li.zhang@ucsf.edu

# Outline

- Background and Introduction
  - T-cell/B-cell Receptor and Repertoire Sequencing
- Proposed Analysis Pipelines with Examples
- Conclusion and Future Work

## T-cell Receptor (TCR) and B-cell Receptor (BCR)

**Receptor Structure** 

V(D)J Recombination



**TCR** is a protein complex found on the surface of T cells, or T lymphocytes, that is responsible for recognizing fragments of antigen as peptides bound to MHC molecules.

**BCR** is composed of immunoglobulin molecules that form a type 1 transmembrane receptor protein usually located on the outer surface of B cells.



#### **Overview of TCR Repertoire Sequencing**



(Adapted from Aaron Logan)

ImmunoSEQ Assay

# **NAIR: Proposed Analysis Pipeline**



# TCR Repertoire Sequences European COVID-19 Patients

#### Next-Generation Sequencing of T and B Cell Receptor Repertoires from COVID-19 Patients Showed Signatures Associated with Severity of Disease

#### recovered without medical intervention

0

Christoph Schultheiß,<sup>1,11</sup> Lisa Paschold,<sup>1,11</sup> Donjete Simnica,<sup>1,11</sup> Malte Mohme,<sup>2</sup> Edith Willscher,<sup>1</sup> Lisa von Wenserski,<sup>1</sup> Rebekka Scholz,<sup>1</sup> Imke Wieters,<sup>3</sup> Christine Dahlke,<sup>4,5</sup> Eva Tolosa,<sup>6</sup> Daniel G. Sedding,<sup>7</sup> Sandra Ciesek,<sup>8,9,10</sup> Marylyn Addo,<sup>4,5</sup> and Mascha Binder<sup>1,12</sup>\*



CVD – cardiovascular disease; DM – diabetes; CRD – chronic respiratory disease

matic + positive SARS-CoV-2 PCR matic \* COVID-19 contact tion ⊖ negative SARS-CoV-2 PCR ↓ sample collection ≠ death

contained sequences from a total of 37 patients, including 69 time points, and overall >6.2 million BCR and >8.3 million TCR sequences

#### **Recall Major Pipelines**



# **Network Analysis**

|                 |                                                 | •                                                         |  |  |  |  |
|-----------------|-------------------------------------------------|-----------------------------------------------------------|--|--|--|--|
| Node            | Account                                         | Nucleotide clone                                          |  |  |  |  |
| Distance        | Minimum number of accounts between two accounts | Number of nucleotide differences between two clones       |  |  |  |  |
| Edge            | Relationship                                    | Only one nucleotide change between two nodes              |  |  |  |  |
| Distance matrix | Friendship info among a group                   | Pairwise distances among clones                           |  |  |  |  |
| Attributes      | Photos or posts                                 | Meta data in nucleotide clone                             |  |  |  |  |
| Cluster         | Groups in FB                                    | A group of clones having direct or<br>indirect connection |  |  |  |  |





Image source: https://www.freecodecamp.org/news/deep-dive-into-graph-traversals-227a90c6a261/

# **Distance Matrix**



## **Network Properties**

| Network property                         | Definition (unit*)                                                                                      | Illustration                         |
|------------------------------------------|---------------------------------------------------------------------------------------------------------|--------------------------------------|
| Node (vertex)                            | The fundamental unit of which graphs are formed: v                                                      | <b>.</b> .                           |
| Edge (link)                              | An unordered pair of distinct vertices: {v, w}                                                          | · <b>!</b> :                         |
| Degree                                   | The number of edges incident to a vertex <i>e</i> : <i>deg</i> ( <i>v</i> )                             | $\rightarrow$                        |
| Largest component                        | Largest subgraph in which any two vertices are connected                                                | °° 🛧                                 |
| k-core                                   | A maximal subgraph of a graph<br>in which all vertices have<br>degree of at least k                     | k=3 • k=2 • k=1 • O                  |
| Clique                                   | A complete subgraph in a graph                                                                          | A <u></u>                            |
| Diameter                                 | The length of the "longest<br>shortest path" between any two<br>vertices: max <sub>(v, w)</sub> d(v, w) | ×                                    |
| Assortativity coefficient                | Pearson correlation coefficient<br>of degree between pairs of<br>linked nodes <i>r</i> ={-1,1}          | $\rightarrow_{r>0}$ $\swarrow_{r<0}$ |
| Cluster<br>size, number                  | Connected component of a graph in which any two nodes are connected                                     | Number = 2 clusters<br>Size = 3,6    |
| Clustering coefficient<br>(transitivity) | The probability that the<br>adjacent vertices of a vertex are<br>connected                              | ×                                    |
| Density                                  | The ratio of the number of<br>edges and the number of<br>possible edges                                 | ×                                    |
| Centralization                           | Centrality score based on node-<br>level centrality c:<br>sum(max(c(w), w) - c(v), v)                   | ¥                                    |
| Average Degree                           | The average number of degrees per node: 2 <i>e</i> /v                                                   | - <del>5</del> X                     |
| Neighborhood                             | Set of all the nodes that are adjacent to a node v: <i>N</i> ( <i>v</i> )                               |                                      |

### nature

#### ARTICLE

https://doi.org/10.1038/s41467-019-09278-8 OPEN

Large-scale network analysis reveals the sequence space architecture of antibody repertoires

Enkelejda Miho<sup>1,2,3</sup>, Rok Roškar<sup>4</sup>, Victor Greiff<sup>5</sup> & Sai T. Reddy<sup>1</sup>

| Network property | Definition*                                                                                                                                        | Illustration |  |  |  |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--|--|--|
| Eigenvector      | Principal eigenvector of $t(A)^*A$ , where<br><i>A</i> is the adjacency matrix of the graph:<br>$x_r = \frac{1}{\lambda} \sum_{t, t \in M(r)} x_t$ |              |  |  |  |
| Authority        | Principal eigenvector of $t(A)^*A$ , where A is the adjacency matrix of the graph                                                                  | ₹¥₹          |  |  |  |
| PageRank         | Principal eigenvector of the normalized matrix of the graph                                                                                        |              |  |  |  |
| Closeness        | Node centrality in a graph:<br>$C(v) = \frac{1}{\sum_{w} d(v,w)}$                                                                                  | *            |  |  |  |
| Betweenness      | Number of shortest paths through <i>v</i> :<br>$B(v) = \sum_{s \neq v \neq t} \frac{\delta_{s}(v)}{\delta_{st}}$                                   | *~火          |  |  |  |

Supplementary Table 2. Network local properties. \*These properties are dimensionless.

Supplementary Table 1. Network global properties.

# Network Properties and Immunological Features



1 AV CAL

:: TRB-F



15 6 7 5

S11++-



-0.1

red



# **Finding Public Clusters Workflow**



#### **Downstream Analysis**







- 0.0 • 0.1
- 0.2

### **Downstream Analysis**



#### **Bayes Factor Adjusted Pvalue**



## Summary of Public Clusters

| Public<br>Cluster |                  |                 | Motif <sup>2</sup> No. of HD No. of<br>Samples <sup>3</sup> Active |                               | No. of<br>Recovered           |                                           |                           |                                     | Coreness <sup>7</sup><br>Median | The % of significant                                           | Correlation of<br>Atchley factor <sup>9</sup> | The % of<br>TCRs                        |
|-------------------|------------------|-----------------|--------------------------------------------------------------------|-------------------------------|-------------------------------|-------------------------------------------|---------------------------|-------------------------------------|---------------------------------|----------------------------------------------------------------|-----------------------------------------------|-----------------------------------------|
| ID1               |                  |                 |                                                                    | COVID<br>Samples <sup>4</sup> | COVID<br>Samples <sup>5</sup> | Active COVID vs.<br>HD                    | Recovered COVID<br>vs. HD | Recovered COVID<br>vs. Active COVID | [Min,Max]                       | TCRs based<br>on Bayes<br>factor <sup>8</sup>                  | Median [IQR]                                  | matched<br>with<br>MIRA <sup>10</sup>   |
| 1                 | 2092             | CASEGGESTENT    | 12                                                                 | 39                            | 19                            | 0.33 (0.02, 0.64)                         | 0.7 (0.38, 1.02)          | 0.37 (0.11, 0.63)                   | 1[1,6]                          | 84.6%                                                          | 0.37                                          | 28.7%                                   |
| ļ                 |                  |                 | ļ                                                                  | ļ                             |                               | p= 0.039                                  | p <0.001                  | p= 0.005                            | <b> </b>                        | ļ                                                              | [0.2,0.53]                                    |                                         |
| 4                 | 2321             |                 | 13                                                                 | 40                            | 18                            | 0.46 (0.09, 0.84)<br>p= 0.016             | 0.67 (<br>p=              |                                     | Ţ.                              |                                                                | 0.5<br>[0.34,0.65]                            | 39.5%                                   |
| 6                 | 1585             | CASSLEGGETDTOVF | 12                                                                 | 39                            | 18                            | 0.41 (0.02, 0.81)<br>p= 0.041             | 0.55<br>p=                | the second second second            |                                 |                                                                | 0.67<br>[0.55,0.78]                           | 22.1%                                   |
| 7                 | 1011             | CASS SERVERY F  | 12                                                                 | 38                            | 18                            | 0.38 (0.08, 0.67) p<br>= 0.012            | 0.5 (C<br>p=              |                                     |                                 |                                                                | 0.44 [0.28,0.6]                               | 80.3%                                   |
| 8                 | 21799            | CASS EVERYF     | 17                                                                 | 39                            | 19                            | 0.25 (-0.02, 0.51)<br>p= 0.067            | 0.46 (<br>p=              |                                     |                                 | disease_status                                                 | 0.43<br>[0.27,0.59]                           | 50.5%                                   |
| 9                 | 782              | CASS            | 8                                                                  | 24                            | 18                            | -0.82 (-1.27, -0.38)<br>p <0.001          | -0.63 (·                  |                                     | R.                              | <ul> <li>active</li> <li>healthy</li> <li>recovered</li> </ul> | 0.54 [0.4,0.68]                               | 26.3%                                   |
| 11                | 894              | CASS            |                                                                    | 34                            | 15                            | -0.07 (-0.48, 0.34)<br>p= 0.733           | 0.27 (·<br>p=             | MAR                                 |                                 |                                                                | 0.6<br>[0.46,0.74]                            | 29.0%                                   |
| 16                | 493 ,            | CASS GSTEAFF    | 7                                                                  | 13                            | 15                            | -0.41 (-0.75, -0.07)                      | -0.25 (                   |                                     |                                 |                                                                | 0.42<br>[0.26,0.57]                           | 50.7%                                   |
| •<br>18           | 681 <sub>i</sub> | CASS FTOYF      | 12                                                                 | 27                            | disease_st                    | p= 0.017<br>0.13 (-0.14, 0.4)<br>p= 0.334 | 0.34 (<br>p=              |                                     |                                 |                                                                | 0.67                                          | 48.9%                                   |
| 22                | 698              | CASSEGEENTFAFF  | 9                                                                  | 16                            |                               | -0.36 ( -0.7, -0.02)<br>n= 0.036          | -0.34 (-                  | AN                                  | *                               | AN IN A                                                        |                                               |                                         |
| 27                | 334              | CASSESSYGVTE    | 5                                                                  | 12                            | 10 <sup>recover</sup>         |                                           | $4\overline{2}$ , $$      |                                     |                                 |                                                                |                                               |                                         |
| 32                | 103              | CASSESGANVI TE  | 4                                                                  | 9                             | 8                             |                                           |                           |                                     |                                 |                                                                |                                               |                                         |
| 44                | 34 ,             | CSVGPETQYF      | 0                                                                  | 8                             | 4                             |                                           |                           | i,                                  |                                 |                                                                |                                               | FDR_by_Bayes_fact                       |
|                   |                  | A Province      |                                                                    |                               |                               |                                           |                           | match_w_MIRA                        |                                 |                                                                |                                               | <ul><li>gt0.05</li><li>lt0.05</li></ul> |
|                   | •                |                 |                                                                    |                               |                               |                                           |                           | TRUE                                | ~                               |                                                                |                                               | • NA                                    |
|                   |                  | State State     |                                                                    |                               |                               |                                           | S. A                      | Ē.                                  |                                 |                                                                |                                               |                                         |
|                   |                  |                 |                                                                    |                               |                               |                                           |                           |                                     |                                 | LAMAN                                                          |                                               |                                         |
|                   |                  |                 |                                                                    |                               |                               | - A                                       | ALL MARCAN                |                                     |                                 | A                                                              | 42 >                                          |                                         |

### **Conclusion & Discussion**

- Used network analysis, other advanced machine learning techniques and statistical approaches, to interrogate and measure immune repertoire architecture in a clinical context.
- Developed customized search algorithms to identify disease associated clones and public shared clones.
- Implemented the proposed methods on different types of datasets that have a wealth of diverse and rich data to demonstrate the flexibility and power of the proposed tools.
- Developed a comprehensive user-friendly bioinformatics tool with visualization to tackle the complexity of the immunosequencing data in a translational fashion.

#### **Future Work**

- Incorporate the abundance into network analysis
- Adapt more features for scRNA-seq data
- A lot more.....



#### Acknowledgements



Lawrence Fong, MD Professor of Medicine, UCSF



Hai Yang, MS Senior Statistician Zhang Lab, UCSF



Brian Neal, MS Student Zhang Lab, UCSF



Jason Cham, MD Resident Physician Scripps Clinic



Tao He, PhD Associate Professor SFSU

- HDFCCC Biostatistics Core
   Division of Hemotology/Ope
- Division of Hematology/Oncology
- Fong Lab
- NIH/NCI R21R21CA264381 (2021-2023)
- NIH/NLM R01LM013763-01A1 (2022-2026)
- UCSF Prostate Cancer Pilot Award (2021-2022)





