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Motivation: Cancer Pathways

Cancer-specific pathway activities that enable tumor
growth and metastatic dissemination
Alternative signalling pathways in response to anti-cancer
treatments
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Differential Co-Expression (DC)

Differential expression (DE) analysis is likely to miss meaningful genetic
interactions.

Differential co-expression (DC) analysis addresses this issue by
evaluating whether there are correlated changes between pairs of
genes across different modulating conditions.

scRNAseq data are count-based and exhibit characteristics such as
overdispersion and zero-inflation
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Our Vision & Long-term Goal

To develop tools for identifying alterations of interactions
within/between various molecular layers in cancer.
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Our Recent Works

LiquidAssociation R package for expression data from
microarray experiments [Ho et al., 2011]
Network construction and latent pathway identification
[Ho et al., 2014, Baek et al., 2020]
Fast search algorithm for identifying DC
[Gunderson and Ho, 2014]
Meta-Analysis [Kinzy et al., 2019, Wang et al., 2017]
Correlated Count Data for bulk RNA-seq data
([Ma et al., 2020])
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Short-Term Goal

To develop a flexible Single-Cell RNAseq Differential
COExpression (scDECO) analysis framework and apply the
proposed algorithm to identify sets of clinically relevant DC
gene pairs using scRNAseq datasets.
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Aim 1: Develop a novel model-based framework for detecting DC using scRNAseq data

τ1

To develop a system to simulate data with differential co-expression
patterns that mimic experimental scRNAseq datasets generated from
various experiment protocols.

Analyses to compare the performance of the proposed approaches to
current DC analysis approaches based on experimental scRNAseq
datasets and to evaluate the effect of read depth per cell in the
comparisons
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Findings
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Findings

Table: Poisson-Gamma: Coverage probability of 95% credible intervals (CIs), interval lengths, Mean square
errors (MSE), and mean bias errors (MBE) based on 1,000 MCMC simulations (τ0 = 0, τ1 = 0.05) using ZENCO
with Re. 50 participants, 100 cells per participant.

Parameter 95% Coverage probability CI length MSE MBE
µ1 0.946 2.356 0.366 -0.057
µ2 0.944 2.356 0.382 -0.075
φ1 0.943 0.672 0.030 -0.007
φ2 0.951 0.667 0.028 -0.003
τ0 0.960 1.054 0.066 -0.011
τ1 0.951 0.044 0.000 0.000

Table: Copula-Based Model: Coverage probability of 95% credible intervals (CIs), interval lengths, Mean square
errors (MSE), and mean bias errors (MBE) based on 1,000 MCMC simulations (τ0 = 0, τ1 = 0.05) using Copula
with Re (new simulation setting). 20 participants, 500 cells per participants.

Parameter Coverage probability CI length MSE MBE
µ1 0.962 0.422 0.011 -0.002
µ2 0.959 0.422 0.011 -0.005
τ0 0.956 0.963 0.052 0.007
τ1 0.872 0.011 0.000 0.000
τy 0.959 1.436 0.132 0.003
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Findings: scDECO with Individual Random Effects

Table: Coverage probability of 95% credible intervals (CIs), interval lengths, Mean square errors (MSE), and
mean bias errors (MBE) based on 1,000 MCMC simulations for model with random effect

Parameter Coverage probability CI length MSE MBE
τ0 0.97 0.48 0.0112 -0.0031
τ1 0.96 0.47 0.0117 -0.0080

Table: Robustness: coverage probability of 95% credible intervals (CIs), interval lengths, Mean square errors
(MSE), and mean bias errors (MBE) based on 1,000 MCMC simulations for model with random effect.

Parameter Coverage probability CI length MSE MBE
τ0 0.96 0.47 0.0121 -0.0001
τ1 0.98 0.47 0.0106 -0.0090
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Findings: Fast Search Algorithm

Table: Comparison of ES, SPSL and C-SPSL model based on 100 simulation
iterations in scenario I (sparsity = 70%). The true values of τ1 are set at
(0, 0, 0, 0, 0, 0, 0, 1, 1, 1)T and the true values τ0 are set to 0. The false discovery rate
(FDR) and false negative rate (FNR) are reported.

Sample size Method FDR FNR Run Time
ES 0.1790 0.0067 11,050.47

n = 200 SPSL 0.0200 0.0652 292.63
C-SPSL 0.0108 0.0903 355.15

ES 0.0530 0.0000 30,540.85
n = 500 SPSL 0.0150 0.0012 573.35

C-SPSL 0.0100 0.0012 671.10
ES 0.0175 0.0000 69,904.12

n = 1, 000 SPSL 0.0025 0.0000 1,038.18
C-SPSL 0.0025 0.0000 1,183.61
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Aim 2: Identify sets of clinically relevant DC gene pairs using scRNAseq datasets from

melanoma and advanced prostate cancer patients
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Findings and Validation

Table: Top table of dynamic correlations differences. ∆τ1 is the
difference between τ1 estimates in Phase 3 (P3) and Phase 1 (P1).

# Gene1 Gene2 τ1(P1) τ1(P3) ∆τ1
1 PDGFC FGFR1 0.045 ( 0.021,0.068) -0.003 (-0.010, 0.005) -0.047 (-0.072,-0.023)
2 AKT1 BAX 0.040 ( 0.008,0.071) -0.003 (-0.014, 0.008) -0.043 (-0.075,-0.010)
3 AKT1 PIK3R1 -0.016 (-0.035,0.004) 0.024 ( 0.009, 0.038) 0.040 ( 0.015, 0.062)
4 PDGFC MAP2K2 0.016 (-0.002,0.032) -0.023 (-0.036,-0.006) -0.039 (-0.059,-0.013)
5 IGF1R FGFR1 -0.024 (-0.048,0.000) 0.007 ( 0.000, 0.014) 0.032 ( 0.006, 0.056)
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Findings

4,645 cells isolated from 19 freshly resected melanoma tumors using
Smart-Seq2

We will develop risk scoring algorithms using top scoring DC gene pairs for
patients clinical outcome prediction.
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Aim 3: Implement a freely accessible software package for DC analysis.

We will release R/Bioconductor packages for implementing the scDECO
algorithm. The R packages will provide the functionality to

Simulate datasets that exhibit DC patterns based on parameter settings
calculated from experimental scRNAseq datasets;

Implement the algorithm using the Poisson-Gamma and the Gaussian
copula model with and without zero-inflation, respectively;

Perform goodness of fit and model selection based on the scRNAseq
data under study;

Calculate risk scores based on DC gene pairs.

The scDECO framework will be provided as open-source software
packages under the BSD 3-Clause License. The software will be
distributed and maintained via the GitHub or R/Bioconductor repository.
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Goals and Time Line

Aim1 Aim2

Year 1 1. Implement and test scDECO 1.Implement scDECO

2. Submit results for publication using scRNA-seq datasets

Year 2 3. Evaluate risk score function 2. Prediction using scDECO

4. Submit results for publication 3. Submit results for publication

5. Release R packages
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Manuscript and Software
Software: R/Bioconductor and GitHub software packages
under the BSD 3-Clause License.

LiquidAssociation R package
https://www.bioconductor.org/packages/
release/bioc/html/LiquidAssociation.html
fastLiquidAssociation R package https:
//www.bioconductor.org/packages/release/
bioc/html/fastLiquidAssociation.html
nPARS https:
//people.stat.sc.edu/hoyen/research.html
Correlated Count Data for bulk RNA-seq data
https://github.com/ZichenMa-USC/
Correlated-bivariate-count-data-regression
ZENCO for single-cell RNA-seq data
https://github.com/zheny714/ZENCO
Integrating correlated multi-omics data from single-cell
experiments. https://github.com/ZichenMa-USC/
FlexibleCopulaModel
Fast Search Algorithm (SPSL, C-SPSL)
https://github.com/zhangwenda1990/DGCspsl
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Manuscripts and Software

Manuscripts
1. Yang Z, Ho YY. Modeling dynamic correlation in

zero-inflated bivariate count data with applications to
single-cell RNA sequencing data. Biometrics. 2021
PubMed PMID: 33720414; PubMed Central PMCID:
PMC8477913; DOI: 10.1111/biom.13457.

2. Flexible copula model for integrating correlated multi-omics
data from single-cell experiments. Biometrics (To appear)

3. Zhang W., Wang L., Fan D., Ho, Y.-Y. (2022+) Fast Search
Algorithms for Identifying Dynamic Gene Co-expression via
Bayesian Variable Selection (Under Review: Statistics in
Medicine)

4. Yang Z., Chen H., Ho Y.-Y. (2022+) Use sufficient direction
factor model to classify cell types using single-cell RNA
sequencing data. (In Preparation)

5. Yang Z., Ho Y.-Y. (2022+) scDECO: A novel statistical
framework to identify differential co-expression gene
combinations systematically using single-cell RNA
sequencing data. (In Preparation)
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Questions and Feedback

Contact: Yen-Yi Ho: hoyen@stat.sc.edu

Thank you!!
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