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Challenges in single nucleotide variant
(SNV) detection from cell-free DNR (cfDNA)

O Low tumor cfDNA fraction

d High tumor heterogeneity

d Existing methods cannot deal with low prevalence SNVs

" Recall:lack of modelling for tumor content and clonal hierarchy

* Precision: insufficient site-level statistics for error control
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v’ cfSNV is an ultra-sensitive
and accurate somatic SNV
caller designed for
cfDNA sequencing.

v’ Provide hierarchical
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multi-layer error
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approach

o LiS, et al. Sensitive detection of tumor mutations from blood and its application to immunotherapy prognosis. Nature Communication. 2021 Jul 7;12(1):4172.
o LiS, et al. cfSNV: a software tool for the sensitive detection of somatic mutations from cell-free DNA. Nature Protocol. 2022 Conditionally Accepted.



cfSNV workflow
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Utilize overlapping read pairs for error suppression

1. Short fragment size
2. Non-random fragmentation
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Joint genotype modeling and 1terative

Mixed nature of cfDNA - Joint genotype model

cfDNA's coverage of all clones - iterative SNV calling
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Read-level machine learning to distinguish true
varlants from sequencing errors for each read
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Simulation data

Real data from cancer patients

cfSNV

v Outperform existing tools in
sensitivity while maintaining
high precision.

v Improve mutation detection
performance in medium-
depth sequencing data, such
as Whole-Exome Sequencing

v Wide-spectrum applications:

] Cancer detection

U Cancer monitoring

L Therapy response prediction



Efficient 1mplementation of cfSNV

O We implemented cfSNV by C++ and python, wrapped into an R package

O We built a Docker image, which is designed to enable researchers and clinicians
with a limited computational background to easily carry out analyses on both
high-performance computing platforms and local computers.

O Mutation calling from a standard preprocessed WES dataset (~250x and ~70 M
target size) can be carried out in 3 hours on an Amazon Web Services cloud
server with 8 vCPUs and 32 GB of RAM.

O It can automatically detect the statistics of the users’ input data and recommend
parameter settings that are tailored to the specific experimental protocol,
sequencing coverage, and the tumor fraction of the dataset.

O cfSNV R package:
O cfSNV Docker image:


https://github.com/jasminezhoulab/cfSNV
https://github.com/jasminezhoulab/cfSNV_docker

Modules of cfSNV package

Three modules: (1) data preprocessing, (2) parameter recommendation, (3) mutation detection.

Preprocessing module

p
STDprep
standard processing of raw reads )
aligned
(cfoNAprep h A
special processing of cfDNA raw and
Input reads, merging overlapping read indices
- reference genome (FASTA) mates, correcting bias, and (BAI)
- target regions (BED) \_Suppressing errors )
» blocked positions (VCF) Outout
» cfDNAraw reads (FASTQ) Parameter recommendation module Pt
- WBC raw reads (FASTQ) * somalic mutations
RecParams * tumor fraction
1 calculating sequencing depth and
- ~ tumor fraction, and recommending
Generatelndex parameters for mutation detection
generating indices for
 reference files ) Mutation detection module
DetectMuts

detecting mutations using cfSNV workflow




Limitations and future work

0 Does not support detection of somatic indels

O Does not consider haplotypes of somatic mutations
Due to short size of cfDNA fragments, it might be difficult to resolve haplotypes from cfDNA

0 The module, “error suppression in the overlapping read mates”,
does not support single-end sequencing data

d Does not provide data preprocessing of UMI-tagged sequencing
data, due to the often customized UMI design



