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EHR Structure

(Figure from Liao et al. 2015) (Figure from ai.googleblog.com)

▶ Structured data: ICD billing codes; lab results etc

▶ Unstructured text data: extracted via natural language processing
(NLP)

▶ Detailed longitudinal patient level data
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Challenges in EHR-linked Survival Analysis

Disease status and event time information is not readily available.

▶ Annotating event time requires labor extensive chart review

▶ Time to first ICD codes inaccurate

▶ Surrogate event time: derived from label+codes+NLP

▶ ⇝ power loss, biased estimates
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Motivating Example: PHS Lung Cancer Study
▶ PHS: Partners Healthcare contains both a wealth of clinical

and also biological measurements.
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▶ Aim to estimate recurrence free survival
for lung cancer patients.

▶ Lung cancer data mart

▶ 70K patients from PHS biobank EMR

▶ 40K patients identified as lung cancer

▶ 5K early stage patients

▶ 300 gLabels for event time manually
annotated by domain experts

▶ Surrogate outcomes derived by using Uno
et al. 2018
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Motivating Example: PHS Lung Cancer Study

Solution: Develop a calibrated survival curve that combines
imperfect sources of information on event time in EHR, together
with the exact event time.
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Sources of information on event times in EHRs

▶ Ti : failure time, the time that the patient developed the event

▶ Ci : censoring time

Labeled data: i = 1, · · · , n
▶ Xi = min(Ti ,Ci ): observed event time:

▶ ∆i = 1(Ti ≤ Ci ): the censoring indicator (whether the
patient developed the event prior to the last visit)

Unlabeled data: i = 1, · · · , n + N

▶ X ∗: imperfect estimates of event times
– time to the first ICD code related to the event
– time to the first NLP mention of the event
– algorithm annotated event time

▶ ∆∗
i = 1(T ∗

i ≤ Ci )

Goal: estimate the survival function S(t).
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Conditional Nelson-Aalen Estimator

▶ Parast et al. 2014: baseline covariates

▶ In our case, T and C may no longer be independent conditional on X∗ and ∆∗

if there is no restriction on X∗ and ∆∗.

▶ As a result, the Nelson-Aalen type estimator defined above may not be
consistent.
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Semiparametric Estimator
Let Z denote a variable related to both T and C .
As T |= C , we have

πt = E{1(T ≤ t)} = E{1(T ≤ t) | C > t} = E{1(T ≤ t)∆ | C > t}
= E [E{N(t) | Z,C > t} | C > t].
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Combined Estimator

To improve the efficiency, we combine proposed semiparametric
estimator with the KM.

Let µ̂ = (ŜSemi, ŜKM)T, and Σ denote their covariance matrix,
then the combined estimator is constructed as

(1TΣ−11)−11TΣ−1µ̂

▶ unbiased

▶ smallest possible variance among all linear combinations
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Asymptotic Properties of Proposed Estimator

Let Wi = (1,ZTi )
T.

Step 1.

√
n(θ̂t − θt) → Normal{0,A−1B(A−1)T},

where

A = −E{1(C > t)g ′(θTt W)WWT};

B = cov[1(C > t){N(t)− g(θTt W)}W];

g ′(x) = exp(x)/{1 + exp(x)}2.

Step 2.

√
n(π̂t − πt) = G(t)−1E{1(C > t)g ′(θTt W)W}T

√
n(θ̂t − θt) + op(1),

where G(t) = P(C > t).
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Asymptotic Properties of Kaplan Meier Estimator

We have

√
n(π̂KM

t − πt) =
1√
n

n∑
i=1

(1− πt)

∫ t

0

dMi (u)

P(X ≥ u)
+ op(1).

In practice, we have to replace all the unknown quantities in the above
influence function with their estimations. This leads to

(1− π̂KM
t )

∫ t

0

dM̂i (u)

Y (u)
= (1− π̂KM

t )

{
∆i1(Xi ≤ t)

Y (Xi )
−

∑
j

∆j1(Xj ≤ t ∧ Xi )

nY
2
(Xj)

}
,

where Y (u) = n−1 ∑Yi (u) and Yi (u) = 1(Xi ≥ u).
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Combined Estimator

To improve the efficiency, we combine proposed semiparametric estimator with
the KM.
Let µ̂ = (ŜSemi, ŜKM)T, and Σ denote their covariance matrix, then the
combined estimator is constructed as

(1TΣ−11)−11TΣ−1µ̂

where

Σ1,1 = CTE [1(Cj > t){Nj(t)− g(θTt Wj)}2WjW
T
j ]C.

Σ2,2 = E [1(Ti ∧ t ≤ Ci ){πKM
t − 1(Xi < t)}2/G 2(Xi ∧ t)].

Σ1,2 = −CTE [1(Ci > t){Ni (t)− g(θTt Wi )}Wiwi (t){πKM
t − 1(Xi < t)}]

▶ unbiased

▶ smallest possible variance among all linear combinations
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Simulation Setup

▶ 400 datasets, each has 200 labeled subjects and 2000
unlabeled subjects

▶ For each dataset, generate
▶ Ti ∼ Exponential(1)
▶ Ci ∼ Exponential(1) or Ci ∼ Uniform(3)
▶ Zi = h(λ,Ti ,Ci ) + ei , with ei ∼ Normal(0, σ)
▶ λ large vs. small
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Settings

1. Ti ∼ Exponential(1), Ci ∼ Exponential(1),
Zi = log(Ti ) + λ log(Ci ) + ei , with ei ∼ Normal(0, 1);
λ = 1 and λ = 0.1.

2. Ti ∼ Exponential(1), Ci ∼ Exponential(1),
Zi = λ log(Ti ) + (1− λ) log(Ci ) + ei , with ei ∼ Normal(0, 1);
λ = 1/2 versus λ = 0.9.

3. Ti ∼ Exponential(1), Ci ∼ Exponential(1),
Zi = λ log(Ti ) + (1− λ) log(Ci ) + ei , with ei ∼ Normal(0, 0.25);
λ = 1/2 versus λ = 0.9.

4. Ti ∼ Exponential(1), Ci ∼ Uniform(0, 3),
Zi = λ log(Ti ) + (1− λ) log(Ci ) + ei , with ei ∼ Normal(0, 0.25);
λ = 1/2 versus λ = 0.9.

5. Ti ∼ Exponential(1), Ci ∼ Uniform(0, 3),
Zi = log{min(T ∗

i ,Ci )}, with T ∗
i = Ti + ei and ei ∼ Exponential(λ);

λ = 2 versus λ = 5.
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Simulation Results

Ti ∼ Exponential(1), Ci ∼ Uniform(0, 3),
Zi = λ log(Ti ) + (1− λ) log(Ci ) + ei , with ei ∼ Normal(0, 0.25);
λ = 1/2 versus λ = 0.9.

15/24



Real data example

▶ Goal: estimate the recurrence-free survival curve of lung
cancer patients

▶ Dataset

▶ 37,021 total lung cancer patients

▶ 5K early stage patients

▶ 340 had recurrence status and observed time to recurrence
labels from chart review (∆i , Xi )

▶ Surrogate outcomes (∆∗
i , Zi ) are available for each patient

obtained by Uno’s two-step estimator
–binary recurrence status
–predict event times using peaks of specific features

▶ Accuracy of ∆∗
i is only 0.79;
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Results - Survival Curve Comparisons
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Remarks

▶ a semi-supervised calibrated survival curve

▶ fully utilize both labeled and unlabeled data

▶ next step: estimate the survival function among different risk
groups (e.g., different treatment group), and test for
difference.
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Thank you!
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Setting 1
Ti ∼ Exponential(1), Ci ∼ Exponential(1),
Zi = log(Ti ) + λ log(Ci ) + ei , with ei ∼ Normal(0, 1);
λ = 1 and λ = 0.1.
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Setting 2
Ti ∼ Exponential(1), Ci ∼ Exponential(1),
Zi = λ log(Ti ) + (1− λ) log(Ci ) + ei , with ei ∼ Normal(0, 1);
λ = 1/2 versus λ = 0.9.
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Setting 3
Ti ∼ Exponential(1), Ci ∼ Exponential(1),
Zi = λ log(Ti ) + (1− λ) log(Ci ) + ei , with ei ∼ Normal(0, 0.25);
λ = 1/2 versus λ = 0.9.
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Setting 4
Ti ∼ Exponential(1), Ci ∼ Uniform(0, 3),
Zi = λ log(Ti ) + (1− λ) log(Ci ) + ei , with ei ∼ Normal(0, 0.25);
λ = 1/2 versus λ = 0.9.

0.0 0.5 1.0 1.5 2.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

more error

t

S
(t

)

Truth
KM_IPW
Semi
Comb
Nelson−Aalen

0.0 0.5 1.0 1.5 2.0
0.

00
0

0.
00

2
0.

00
4

t

M
S

E

0.0 0.5 1.0 1.5 2.0

0.
55

0.
60

0.
65

0.
70

t

co
r

0.0 0.5 1.0 1.5 2.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

less error

t

S
(t

)

Truth
KM_IPW
Semi
Comb
Nelson−Aalen

0.0 0.5 1.0 1.5 2.0

0.
00

00
0.

00
05

0.
00

10
0.

00
15

t

M
S

E

0.0 0.5 1.0 1.5 2.0
0.

30
0.

35
0.

40
0.

45
0.

50

t

co
r

23/24



Setting 5
Ti ∼ Exponential(1), Ci ∼ Uniform(0, 3),
Zi = log{min(T ∗

i ,Ci )}, with T ∗
i = Ti + ei and ei ∼ Exponential(λ);

λ = 2 versus λ = 5.
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