

Advancing cancer benchmarking and data sharing through crowd-sourced challenges ITCR 2022

James Eddy @ Sage Bionetworks

Core Values @ Sage

- **Be intentional** consider solutions from more than one perspective.
- Promote an **ecosystem of sharing** with proper **attribution**.
- Solve specific problems with general solutions make these available for **reuse** and adaptation.
- Do trustworthy, impactful work prioritize outcomes over ego.
- **Be bold** and willing to experiment.

sagebionetworks.org/our-culture

Community Coordination @ Sage

Celgene

conditions across the Lifespan to Understand Down syndromE

PHYSICAL SCIENCES in ONCOLOGY

SageBionetworks

AD Knowledge Portal

Genentech Roche A Member of the Roche Group

Bristol-Myers Squibb

Our Approach

NF OPEN SCIENCE INITIATIVE

DREAM

Cutting edge research & data Community challenges & benchmarking Reproducible computing at scale FAIR data sharing & discovery Molecular, clinical, & imaging data integration Standards & interoperability

NATIONAL CENTER FOR DATA TO HEALTH

Clinical & Translational SA Science Awards Program

What do we do?

At Sage we believe that by harnessing the power of open science, we help research communities develop reliable outcomes to advance our understanding of human health.

Responsible Data Sharing

Sage supports research collaborations by overseeing data coordination, visualization, and analytics across distributed teams. We manage grant- or project-based research consortia to share, evaluate and distribute data, methods, and insights.

Benchmarking Reliable Methods

Because we are all susceptible to the self-assessment bias, Sage has developed tools that help researchers to objectively benchmark the performance of computational methods, and to disseminate community-verified methods.

Understand Real-World Evidence

By applying our approach to digital health, Sage works with participants and researchers to understand how real-world environments impact our individual experience of health and disease.

What do we do?

At Sage we believe that by harnessing the power of open science, we help research communities develop reliable outcomes to advance our understanding of human health.

Responsible Data Sharing

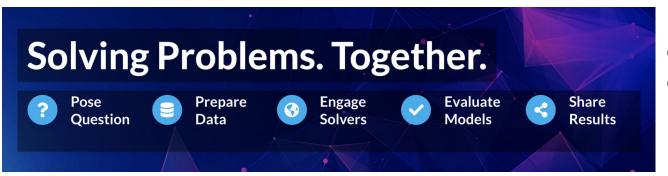
Sage supports research collaborations by overseeing data coordination, visualization, and analytics across distributed teams. We manage grant- or project-based research consortia to share, evaluate and distribute data, methods, and insights.

Benchmarking Reliable Methods

Because we are all susceptible to the self-assessment bias, Sage has developed tools that help researchers to objectively benchmark the performance of computational methods, and to disseminate community-verified methods.

Understand Real-World Evidence

By applying our approach to digital health, Sage works with participants and researchers to understand how real-world environments impact our individual experience of health and disease.



Our mission is

- to contribute to the solution of important **biomedical** problems
- to foster **collaboration** between research groups
- to **democratize access** to data
- to accelerate research
- to **objectively assess** algorithms and their performance

DREAM Challenges use crowd-sourcing to solve complex biomedical research questions

dreamchallenges.org

€ 60+

Crowd-sourced DREAM Challenges have benchmarked informatic algorithms in biomedicine

🖀 30,000

Cross-disciplinary participants from around the world have volunteered as solvers.

105+

Academic journal publications have resulted from DREAM Challenges covering a range of disease areas

A Few of Our Partners

Histol-Myers Squibb

UW Medicine

UNIVERSITÄT HEIDELBERG ZURUNFT SEIT 1386

AstraZeneca

COLUMBIA UNIVERSITY IRVING MEDICAL CENTER

Ucla

THE MICHAEL J. FOX FOUNDATION

BILL& MELINDA GATES foundation

Synapse: Cloud Platform for Challenges

Project Overview

ITCR U24 for Advancing Method Benchmarking

Award Type	Award Year	PI Name(s)	Institution(s)	Project	Status
U24	2020	 James Eddy Jacob Albrecht Paul Christopher Boutros 	 Sage Bionetworks 	Advancing Method Benchmarking and Data Sharing Through Crowd-Sourced Competitions in Cancer Research	Active

- **AIM 1:** Develop a community hub and *benchmarking toolkit* for biomedical challenges.
- **AIM 2:** Develop *portable software and services for distributed benchmarking* on sensitive and protected data.
- **AIM 3:** Expand the biomedical challenge community through improvements in education, outreach, and empowering the organization of independent challenges and benchmarking projects.

Leadership Team

TEMPUS

Justin Guinney VP, Computational Oncology Sage Bionetworks

James Eddy Director of Architecture & Operations Data & Tooling @ Sage Bionetworks

Paul Boutros Director, Cancer Data Science @ UCLA Professor, Human Genetics @ UCLA

Paul Boutros Still Paul!

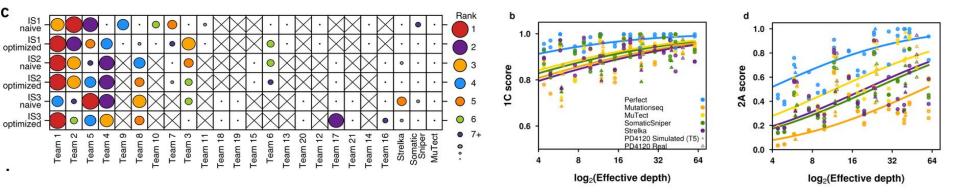
Gustavo Stolovitzky

Director, Translational Systems Bio @ IBM Founder, DREAM Challenges

Jake Albrecht Director of Challenges and Benchmarking Benchmarking @ Sage Bionetworks

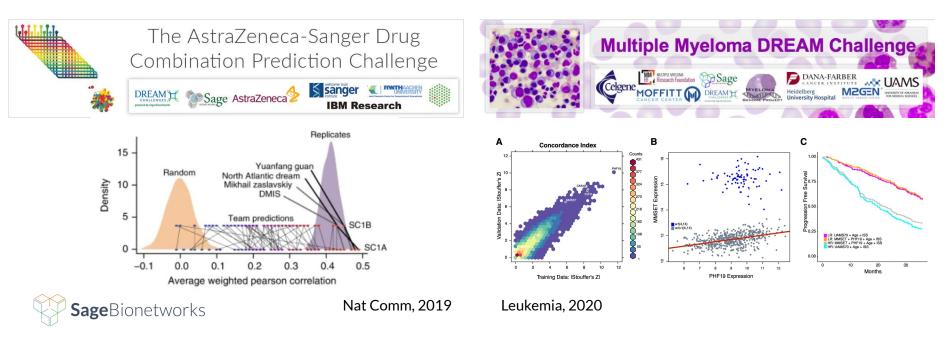
Problem Statements

- 1. "Self-assessment" has impeded the validation and dissemination of bioinformatics tools and methods.
- 2. New paradigms for data sharing and community engagement are needed to unlock understanding around critical datasets.
- 3. Translational and clinical tools require robust assessments of performance and generalizability on diverse patient cohorts.


Problem #1: Fix the Self-Assessment Trap

- "Self-assessment" has impeded validation and dissemination of computational methods.
- Answer: challenges provide a rigorous framework for benchmarking tools

SageBionetworks


Nat Genetics, 2014; Nat Methods, 2015; Genome Bio, 2018

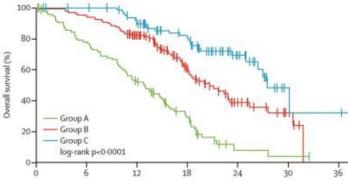
Nat Biotech, 2020; Nat Methods, in press

Problem #2: Unlock Hidden Data & Create Communities

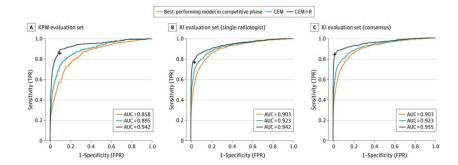
New paradigms for data sharing and community engagement are needed to unlock understanding around critical datasets.

Answer: challenges provide innovative mechanism for data access & community participation

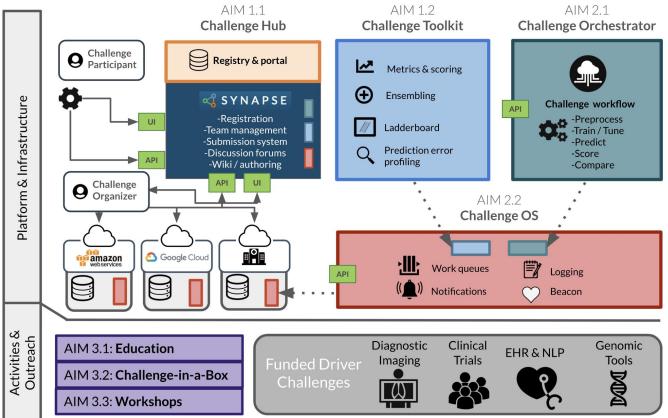
Problem #3: Robust Performance Assessment


Translational and clinical tools will require robust assessments of performance and generalizability on diverse patient cohorts.

Answer: challenges can define and assess clinical benchmarks



SageBionetworks



Lancet Oncology, 2017 JCO-Clinical Cancer Informatics 2017

JAMA Oncology, 2017 JAMA Network Open, 2020

Project at a Glance

Challenge Platform 2.0

Existing Limitations & Opportunities to Improve

Challenge user experience is... challenging

- Organizers need to be able to set up and launch new challenges with less overhead
- Participants need easier to use interfaces and processes for submitting to a challenge (and getting help)
- Evaluation infrastructure should be standardized and/or shared across challenges, so that less effort is needed to provision, configure, and maintain compute environments
- Discoverability of challenges and challenge results is minimal
 - Prospective participants (and organizers) need a better way to browse and search for challenges of interest, including upcoming, active, and closed challenges
 - We need to support discovery and insight that spans the boundaries of individual challenges

• Challenge solutions and artifacts are difficult to share and reuse

- Modelers need a central view to identify challenge datasets that are open and available (to train or validate new methods)
- Researchers need a way to access and use top performing methods and tools for their own projects
- Organizers need a way to find and reuse validated metrics and evaluation routines

Existing Limitations & Opportunities to Improve

• Challenge user experience is... challenging

- Organizers need to be able to set up and launch new challenges with less overhead
- Participants need easier to use interfaces and processes for submitting to a challenge (and getting help)
- Evaluation infrastructure should be standardized and/or shared across challenges, so that less effort is needed to provision, configure, and maintain compute environments

• Discoverability of challenges and challenge results is minimal

- Prospective participants (and organizers) need a better way to browse and search for challenges of interest, including upcoming, active, and closed challenges
- We need to support discovery and insight that spans the boundaries of individual challenges
- Challenge solutions and artifacts are difficult to share and reuse
 - Modelers need a central view to identify challenge datasets that are open and available (to train or validate new methods)
 - Researchers need a way to access and use top performing methods and tools for their own projects
 - Organizers need a way to find and reuse validated metrics and evaluation routines

Existing Limitations & Opportunities to Improve

• Challenge user experience is... challenging

- Organizers need to be able to set up and launch new challenges with less overhead
- Participants need easier to use interfaces and processes for submitting to a challenge (and getting help)
- Evaluation infrastructure should be standardized and/or shared across challenges, so that less effort is needed to provision, configure, and maintain compute environments

• Discoverability of challenges and challenge results is minimal

- Prospective participants (and organizers) need a better way to browse and search for challenges of interest, including upcoming, active, and closed challenges
- We need to support discovery and insight that spans the boundaries of individual challenges

• Challenge solutions and artifacts are difficult to share and reuse

- Modelers need a central view to identify challenge datasets that are open and available (to train or validate new methods)
- Researchers need a way to access and use top performing methods and tools for their own projects
- Organizers need a way to find and reuse validated metrics and evaluation routines

SageBionetworks

Key Elements of a Next-generation Challenge Platform

- Lingua franca of challenges and benchmarking concepts
- Purpose-built services and interfaces for challenge participation *and* administration
- Streamlined user interaction (with better docs) for submitting to a challenge, with accessible resources for improving performance
- Standard libraries (or templates or SDKs) for challenge processes, data QC, evaluation metrics, and performance ranking
- Information capture, dissemination, and reuse across challenges to accelerate the advancement of scientific knowledge

Challenge Silos?

Challenge Registry

Current Challenges (pun intended)

Motivations for the Challenge Registry

- Over 25 organizations that run biomedical challenges
 - Missing standardization
 - No central hub
 - Challenge searching can be overwhelming and time-consuming
- Limited exposure and participation

Our Solution

We aim to develop a portal to capture challenge metadata organized by different platforms.

- 1. Standardize the challenge annotations (via the MIAC schema)
- 2. Apply MIAC to DREAM Challenges
- 3. Provide a web-based portal to access that data (Challenge Registry)
- 4. Engage with other challenge-running organizations to connect them to the Challenge Registry

Minimal Information <u>About a Challenge</u>

Challenge Registry Team

Thomas Schaffter Senior Research Software Engineer Data & Tooling Group

Verena Chung Bioinformatics Engineer Benchmarking Group

Rong Chai Bioinformatics Engineer Benchmarking Group

Past contributors: Milen Nikolov, Thomas Yu, Michael Mason, Justin Guinney

Standardize and Restructure with MIAC

DREAM landscape snapshot

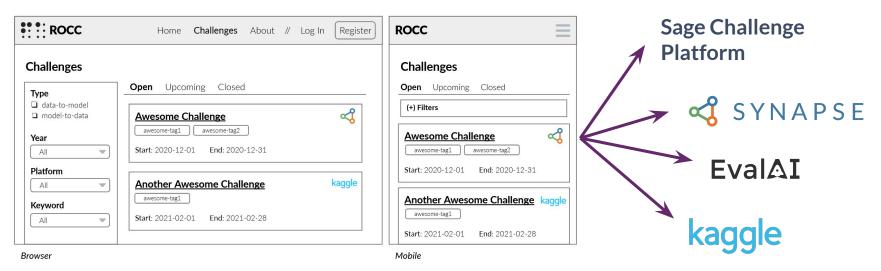
challenge	challengeYear		challengeKeywords	challengeSummary ch
NIEHS-NCATS-UNC Toxicogenetics		2013	Toxicogenenetics	This challenge is designed to build pr
Whole-Cell Parameter Estimation		2013	Whole-Cell Parame	The goal of this challenge is to exp DF
HPN-DREAM Breast Cancer Network Inference		2013	Network Inference	The overall goal of the Heritage-DRE
Rheumatoid Arthritis Responder		2014	Arthritis	The goal of this project is to use a Ar
ICGC-TCGA DREAM Genomic Mutation Calling		2014	Mutation Calling	The ICGC-TCGA DREAM Genomic M
Acute Myeloid Leukemia Outcome Prediction		2014	AML, DREAM	The AML Outcome Prediction Ch M.
Broad-DREAM Gene Essentiality Prediction		2014	Targeted Cancer Th	The goal of this project is to use a CT
Alzheimer's Disease Big Data		2014	Alzheimers	The goal of the Alzheimer's Disea: Ala
DREAM Olfaction Prediction		2015	Olfaction	The goal of the DREAM Olfaction IFF
Prostate Cancer		2015	Prostate Cancer	This challenge will attempt to imp Pro
ALS Stratification Prize4Life		2015	ALS	As illustrated by the overview figu Pri
AstraZeneca-Sanger Drug Combination Prediction		2015	Drug synergy	To accelerate the understanding c As
SMC-DNA Meta		2016	SMC-DNA	The goal of this Challenge is to ide Or
SMC-Het		2016	Somatic Mutation C	The ICGC-TCGA DREAM Somatic Pro
Respiratory Viral		2016	Respiratory Viral	Respiratory viruses are highly infe DA
Disease Module Identification		2016	Module Identification	The Disease Module Identification Sy
ENCODE		2016	Transcription Facto	Transcription factors (TFs) are regulator
Idea		2016	Idea	The DREAM Idea Challenge is design
SMC-RNA		2016	Somatic Mutation C	The ICGC-TCGA DREAM Somatic NS
Digital Mammography		2017	Mammography	The Digital Mammography DREA La
Multiple Myeloma		2017	Myeloma, DREAM,	Multiple myeloma (MM) is a cance Ce

schema.org data models

sonema.org						
				_	_	
Thing			REGISTRY OF OPEN	R	0	
Thing			CHALLENGES	C	С	
The most generic type of	item.		Q Search			
Property	Expected Type	Descrip	Introduction Challenge		~	
Properties from Thing			_			
	URL	An addi	Add a challeng	e		
additionalType		types fr relation		lenges	s	
addreionarrype		syntax, - for m		9		
		underst	Delete a challe	nge		
alternateName	Text	An alias	Grant		>	
description	Text	A descr	Grant			
-			Organization		>	

Person

EQUEST BODY SCHEMA:	application/json	Payload
		Content type
- name	string	application/json
required	The challenge name	
- startDate	string <date></date>	Copy Expand all Collapse all
required	When the challenge started	(
		"name": "Awesome Challenge",
- endDate	string <date></date>	"startDate": "2020-11-10",
required	When the challenge ended	"endDate": "2020-12-31",
		"url": "https://synapse.org/awesc
- url	string «uri»	"status": "open",
	The URL to the challenge website	- "tags": [
		"awesome-tag1",
- status	string (ChallengeStatus)	"awesome-tag2"
required	Enum: "upcoming" "open" "closed"	1
	The status of the challenge	- "challengeResults": {
		"nSubmissions": 0,
- tags	Array of strings (TagId)	"nFinalSubmissions": 0.
	The tags associated to the challenge	"nRegisteredParticipants": 0
		hegisteredidisipants i s
- challengeResults >		- "organizers": [
	The results of a challenge	- "organizers": ["507f1f77hcf86cd799439011"
		1
- organizers	Array of strings (Personid)	
	The organizers of the challenge	
		Response samples
Responses		201 400 409 500
		Content type
> 201 Success		application/ison


MIAC schematized data model тад Attribute Valid Values Properties Description Requires Required Documentation Powered by ReDo Challenge Organizing Group The name of the Challenge organizing group BioCreAtivE, CAFA, CAGI, CAMDA, CAMEO, CAMI, C. Organizing Group URL, Organzing TRUE FALSE Organizing Group URL URL to the Challenge organizing group homepage FALSE Organzing Group Summary A summary of the Challenge organizing group (e.g., description, mission, focus areas) Organzing Group Class FALSE Defines the Challenge organizing group as p Academic, Industry TRUE Challenge The name of the Challenge for which all other Challenge details will be tied. A Challenge can have multi Challenge Keywo Filename, File Fi TRUE Challenge Keywords A non-restricted list of keywords in array format that will be used for searching the registry of Challenges. Challenge Summary The high-level description of a Challenge aimed to address a key research topic. TRUE Challenge Sponsors List if the Challenge sponsors as an array of strings TRUE TRUE Challenge URL URL to the Challenge homepage Challenge Organizers List of the Challenge organizers and their associated institutional affiliations. Names and institutions will be comma separated and lists will TRUE Challenge Participants List of registered particpants FALSE Has Subchallenge Indicates if this challenge has a subchallenge Yes - has subchallenge, No FALSE Yes - has subchallenge Subchallenge Status, Subchallenge Start Date, Subchallenge End Date, Su Challenge has a subchallenge Subchallenge The specific question that is being addressed. Each Subchallenge will have its own data and results. TRUE Subchallenge Status The status of the Challenge, which can be of Open, Closed, Preparing TRUE Subchallenge Start Date The launch date of the subchallenge TRUE Subchallenge End Date TRUE The completion date of the subchallenge

Challenge Registry OpenAPI specification Sage-Bionetworks/challenge-registry

Challenge Ecosystem

Hub for Challenge Exploration and Promotion

Challenge Registry Wireframes

Challenge Platforms

Understanding Stakeholders

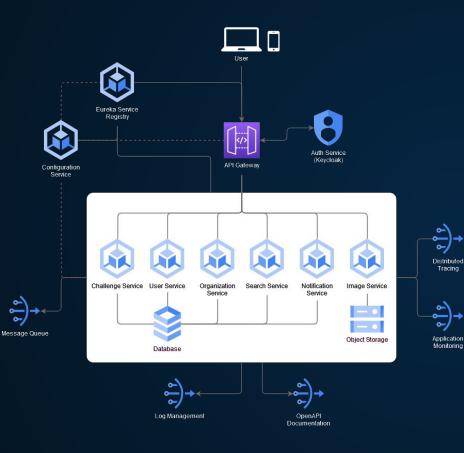
Challenge Participant "I want to find interesting challenges" **Challenge Organizer** "I want to maximize the visibility of my Challenge"

Organization Manager

"I want consistent communications and Challenges analytics data"

Examples from BraTS 2021

Fereshteh K. Masters of Medical Radiation Shiraz University


Ujjwal B. Postdoctoral Researcher University of Pennsylvania

Spyros B. Assistant Professor University of Pennsylvania

Spyros B. Organizing Committee MICCAI

Challenge Registry Architecture

The Challenge Registry is the entrypoint to Sage Challenge Ecosystem where Organizers and prospective Participants connect.

The Registry adopts a microservice and Micro-Frontend architecture.

Thomas Schaffter Architecture

Backend Servers & Microservices (Java - Spring)

Uniform Dev Environment

(VS Code)

Web Apps (TypeScript - Angular)

Portable Apps & Services (Docker)

UI Mockups (Figma - teleportHQ)

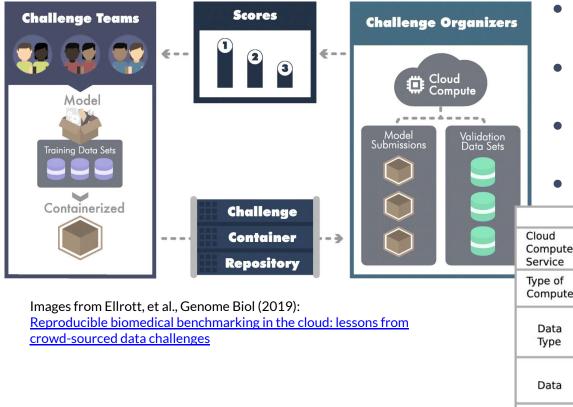
OpenAPI for Code Generation & Documentation

Challenge Technology Stack

Our development workflow is built upon modern best practices (e.g. using code generators) to **accelerate development and improve collaboration**.

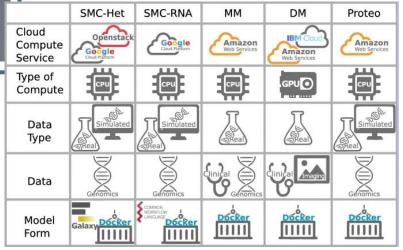
FAIR (Findable, Accessible, Interoperable, Reusable) • Standardization • Open source • Portable

Thomas Schaffter Lead Software Developer



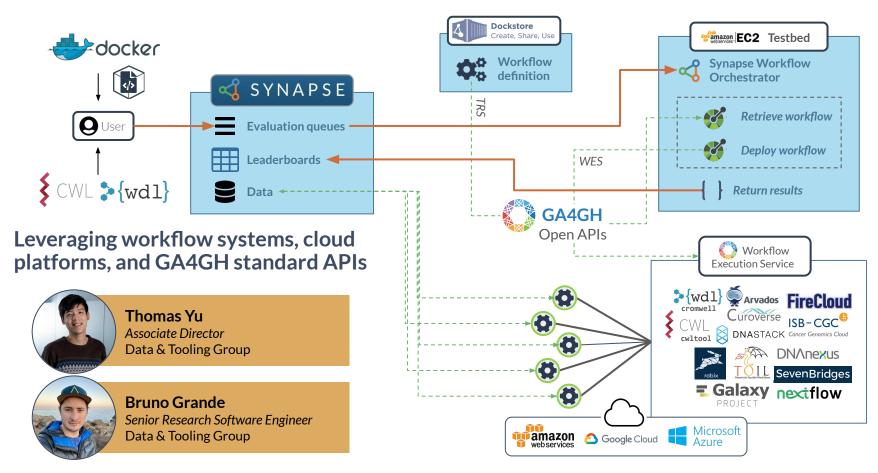
Data Storage (SQL / Mongo / Elastic) IAM (Keycloak) Log Management (ELK Stack) Monorepo (Nx) Message Queue (RabbitMQ) App Monitoring (Prometheus & Graphana) Distributed Tracing (Zipkin?)

Evaluation Orchestration



Model-to-Data for Benchmarking

SageBionetworks


- Permits use of sensitive or proprietary data
- Preserves integrity of gold-standard validation data
- Algorithm reproducibility and re-usability
- Prospective assessment

Federated Model Evaluation in Clinical Contexts

Model-to-Data: Why not Workflows?

Next Steps

Ongoing Challenges & Collaborations

dreamchallenges.org

Roadmap for a Challenge Platform 2.0

- Moving from design to implementation: developing prioritized components and services for Challenge Platform user stories
- **Building out a Challenge Toolkit:** QC approaches, evaluation metrics, bootstrapping procedures, etc. standardizing and packaging for reuse
- Enabling scalable model evaluation: deployment and hardening of workflow orchestration infrastructure for challenges
- Leveraging cloud workbench platforms: connecting to third party systems (e.g., Terra, Seven Bridges / Cavatica, DNAnexus) for workflow execution
- Improving robustness for federated training and evaluation: incorporating tools like *FeTS.ai* and others into Challenge Toolkit

Thanks!

Acknowledgements

Sage Bionetworks

- James Eddy, Data & Tooling
- Jake Albrecht, Challenges & Benchmarking
- Thomas Schaffter, Data & Tooling
- Thomas Yu, Data & Tooling
- Verena Chung, Challenges & Benchmarking
- Rong Chai, Challenges & Benchmarking
- Timothy Bergquist, Challenges & Benchmarking
- Aarthi Krishnan, Challenges & Benchmarking
- Amy Heiser, Challenges & Benchmarking
- Kevin Boske, Platform Product Management
- Ljubo Bradic, Platform Design

UCLA

- Paul Boutros
- The Boutros Lab

Collaborators

- Spyros Bakas @ UPenn
- Ujjwal Baid @ UPenn

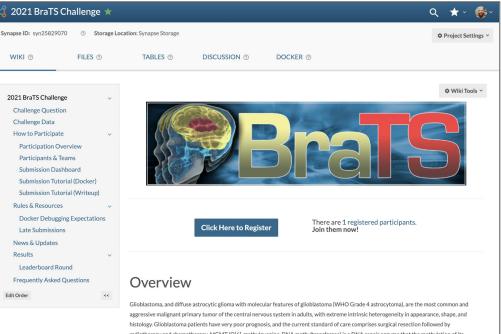
Project Scientist

• Keyvan Farahani @ NCI

NATIONAL CANCER INSTITUTE Informatics Technology for Cancer Research

U24-CA248265

RSNA-ASNR-MICCAI BraTS Challenge on Synapse


SYNAPSE

Your go-to source for all things **BraTS Challenge**:

- Registration
- Documentation & instructions
- Challenge data files & tables
- Background info & references
- Discussion forums
- Leaderboards

synapse.org/BraTS2021

Glioblastoma, and diffuse astrocytic glioma with molecular features of glioblastoma (WHO Grade 4 astrocytoma), are the most common and aggressive malignant primary tumor of the central nervous system in adults, with extreme intrinsic heterogeneity in appearance, shape, and histology. Glioblastoma patients have very poor prognosis, and the current standard of care comprises surgical resection followed by radiotherapy and chemotherapy. MGMT (Ol6)-methylguanine-DNA methyltransferase) is a DNA repair enzyme that the methylation of its promoter in newly diagnosed glioblastoma has been identified as a favorable prognostic factor and a predictor of chemotherapy response. Thus determination of MGMT promoter methylation status in newly diagnosed glioblastoma can influence treatment decision making. The International Brain Tumor Segmentation (BraTS) Challenges—which have been run since 2012—assess state-of-the-art machine learning (ML) methods used for brain tumor image analysis in mpMRI scans.

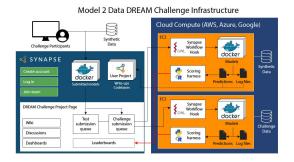
BraTS Challenge

The Brain Tumor Segmentation (BraTS) Challenge celebrates its 10th anniversary, and this year is jointly organized by the Radiological Society of North America (RSNA), the American Society of Neuroradiology (ASNR), and the Medical Image Computing and Computer Acceleted Interventions (MICCA)) coclean

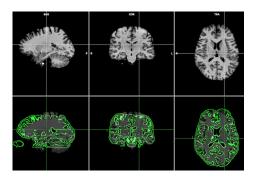
Getting started

Learn more about the Question

Learn more about the Data


2021 BraTS at a Glance

Community


- 900+ participants across 5 continents
- 1400+ submissions scored
- 83 short papers submitted

Infrastructure

- GPU-supported evaluation infrastructure
- Validation phase used traditional challenge framework
- Final Docker submission phase uses model-to-data framework

Data

- *Nii.gz imaging files
- Nearly 2000 cases!
 - $\circ~$ 1251 for Training
 - \circ 219 for Validation
 - \circ 570 for Testing

