Computational prediction of MHC
anchor locations guide neoantigen

identification and prioritization

Huiming Xia

Griffith Lab

ITCR Annual Meeting 2022
September 14, 2022

Washington University School of Medicine in St Louis




Neoantigens and their clinical utility
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Short peptide sequences resulting from somatic
mutations in tumors

Potential of binding and being presented by MHC
class | or Il molecules to allow recognition by
cytotoxic T cells

Activate a T-cell mediated cell death response for
tumor cells

Thus if given the ability to accurately predict
neoantigens, the results can not only be used to
design personalized vaccines for cancer patients
but can also be exploited for predicting response
to immune checkpoint blockade therapy.

Richters, Xia et al. Genome Medicine (2019)



Anchor vs Mutation Position in Neoantigen Prediction
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The effectiveness of a neoantigen-based vaccine relies in
part on whether the sequence presented to T cells has
previously been exposed to the immune system.

» susceptibility to central tolerance

* Auto-immunity

Many pipelines and past neoantigen studies consider
simple filtering strategies regarding WT vs MT peptides
« MT IC50 < 500nM

» Agretopicity > 1
Only a subset of peptide positions are potentially presented

to the T cell receptor for recognition while other positions
are responsible for anchoring to the MHC

Fritsch, Edward F., et al. Cancer immunology research (2014)



Computational and quantitative prediction of HLA-specific anchor positions

General ldea:

To evaluate how mutations occurring at each individual
position change the predicted binding interaction
between the strong binding peptide and the MHC
molecule

Significant change observed at a particular location
indicates a higher probability of the amino acid at the
position acting as an anchor

Little to no change in binding affinities when a position
is mutated would indicate a lower probability of the
position acting as an anchor
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HLA Alleles
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Prediction results show distinct
patterns of HLA anchor locations

Heatmap showing anchor probabilities for 318 HLA
alleles and 9-mer peptides

Six clusters showing different anchor patterns

1 2 3 4 5 6 7 8 9

1.0
median score

0.8
° W: weak
§ M: moderate —
» 06 S: strong
o
(0]
N
©
£ 04
o
prd

02

0f




Validation Process and Results

1. Structural analysis with crystallography structures
« 166 protein structures collected corresponding to 33
HLA alleles
 Measured both distance between HLA and peptides
as well as solvent accessible surface area
* Spearman correlation used to compare our anchor
predictions to the measured metrics

2. 1C50 binding assays and cell-based stabilization assays

» Mutated peptides at both anchor and non-anchor
locations and performed cell-based stabilization
assays and IC50 binding assays to assess their
influence on peptide-MHC binding

» Experimental results confirmed the varying strengths
of individual positions acting as anchors for different
MHC alleles
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Conclusions

« Developed a computational workflow for predicting probabilities of anchor positions for a wide range of
HLA alleles

* Prediction results show that anchor positions can vary substantially between different HLA alleles

« We further experimentally validated a subset of HLA allele anchor patterns using binding assays and
cell-based stabilization assays

« The underlying quantitative scores from our anchor prediction workflow are available for incorporation
into neoantigen prediction workflows (e.g. pVACtools) and we believe this will improve their
performance in predicting immunogenic tumor specific peptides @ VAC

qQoP

« Additional work is needed to expand to a larger range of HLA alleles (including Class Il) and further
experimental validation measuring T-cell responses would be ideal
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