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Prior-informed NeuralODEs to discover sparse regulatory dynamics from temporal gene expression data

Big picture: the problem

➜ We are interested in gene expression dynamics

✮ Utility:

1 understanding the nature of biological systems
2 predicting responses to interventions

➜ Formal problem:
given:

- g1(t = t0), g1(t = t1), . . . , g1(t = tT )
- g2(t = t0), g2(t = t1), . . . , g2(t = tT )
- . . . . . .
- gn(t = t0), gn(t = t1), . . . , gn(t = tT )

estimate dynamics functions (i.e. ODEs) f1, f2, . . . , fn, where:

- dg1/dt = f1(g1, g2, . . . , gn, t)
- dg2/dt = f2(g1, g2, . . . , gn, t)
- . . . . . .
- dgn/dt = fn(g1, g2, . . . , gn, t)
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PHOENIX architecture

➜ biologically motivated (Hill-like activation functions)

➜ biologically explainable (prior domain knowledge)

✮ PHOENIX = Prior-informed Hill-like ODEs to Estimate Network
Integrals with eXplainability
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PHOENIX outperforms OOTB models on synthetic data
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PHOENIX flexibly estimates yeast cell cycle dynamics

➜ Microarray expression for 3551 genes from synchronized yeast cells

➜ Prior model based on motif map of promoter targets

➜ Explainability validation = ChipSeq data

✮ Validation R2 = 85% ; AUC (explainability) = 0.86
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PHOENIX scales to human breast cancer dynamics

➜ Micro-array expression for 11151 genes from breast cancer cells across
186 patients ordered in psuedotime

➜ Prior model: used motif map of promoter targets; validation:
ChIP-seq data from the MCF7 (breast cancer) cell line in ReMap2018

Number of genes Val. set R2 AUC
ĜRN

Runtime(AWS $)
500 99% 0.91 0.06
2000 98% 0.91 0.16
4000 97% 0.86 0.28
11165 97% 0.81 1.63

✮ Scaling allows discovery of candidate genes for novel drivers of breast
cancer progression
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Thank you! (poster #40)

Prior-informed NeuralODEs to Estimate Gene-Regulatory Dynamics
Intekhab Hossain1, Rebekka Burkholz2 & John Quackenbush1,3

1 Harvard University dept. Biostatistics (Boston, MA), 2 CISPA - Helmholtz Center for Information Security (Saarbrücken, Germany), 3 Dana Farber Cancer Institute (Boston, MA)

Objectives

➜ Ordinary differential equation (ODE) models that can
accurately and causally explain temporal gene expression
patterns are crucial for:
1 understanding the nature of biological systems
2 predicting response to interventions

➜ Starting from time-series gene-expression data, we aim to
estimate ODEs that describe how expression evolves in time

−→x (t0), x(t1),−→x (t2), . . . ,−→x (tT ) est.=⇒ d−→x
dt

➜ Current estimation methods suffer from multiple issues:
1 Not predictive : simple models that perform poorly out-of-sample [1]
2 Not biologically explainable : complex black-box methods that

optimize predictions, but not necessarily learn biologically meaningful
and sparse representations of the causal dynamics [2, 3]

3 Not flexible : parametric models with restrictive functional forms that
are not able to flexibly represent arbitrary dynamics across both
continuous and discrete time scales [4]

4 Not scalable : expensive models that only work on small sets of genes,
or a small number of UMAP/PCA projections of genes [5, 6]

✮ We solved these issues concurrently, by employing a modern
ML framework regularized by biological domain knowledge, to
estimate dynamics that are sparse, explainable, and scalable

Model development

➜ Out-of-the-box (OOTB) NeuralODE [7] architecture:

✮ 1 Incorporated Hill-like activations from systems biology [8] to model
additive (HΣ) and multiplicative (HΠ) co-activation/co-repression

2 Explicitly optimized explainability and induced sparsity through
user-specified prior model based on expert domain knowledge

✮ PHOENIX = Prior-informed Hill-like ODEs to Estimate
Network Integrals with eXplainability

Supplemental information
← References & acknowledgements
← Details about figures & results
← Contact information
Tools from our group (netZoo) →

#1 Predictive: noisy dynamics from simulated GRN

➜ Tested PHOENIX on two simulated [9]
systems (n = 350, 690 genes) of 150
trajectories each, with varying noise

➜ k-fold cross validation to compare against
prior-less PHOENIX and OOTB models

✮ PHOENIX is robust and generally outperforms OOTB models, across all noise-settings
✮ Prior-less PHOENIX seems to be most predictive, but not as explainable (−→)

#3 Flexible: oscillating yeast cell cycle dynamics

➜ Applied PHOENIX to microarray trajectories of n = 3551 genes from synchronized yeast cells [10]
during cell cycle. Used a motif-based prior model and validated explainability using ChipSeq [11]

✮ PHOENIX is a universal approximator; it flexibly deviates from Hill-like behavior, to accurately
capture oscillating dynamics that dampen over time (as yeast cells fall out of synchronization)

#2 Explainable: recovery of sparse causal biology

➜ Extracted encoded ĜRN from trained models, and compared to ground truth GRN in simulation
➜ Explainability metrics: edge-recovery (AUC, TPR, TNR); degree-alignment (ρout); sparsity (Cmax)
✮ PHOENIX models heavily outperform OOTB models across all explainability metrics.
✮ Prior domain knowledge makes PHOENIX robustly explainable, and induces sparse dynamics.

#4 Scalable: large-scale breast cancer dynamics

➜ Applied PHOENIX to microarrays of n = 500, 2000, 4000, 11165 genes from 186 breast cancer
(BC) samples [12] ordered in psuedotime [13]; motif-based prior model and ChipSeq validation [14]

➜ Performed perturbation analysis on trained models to compute “influence scores" for each gene
✮ PHOENIX scales to human-genome-like magnitudes, while remaining predictive and explainable
✮ This allows feasible and accurate prediction of the downstream effects of modulating any gene
✮ PHOENIX validates known drivers of BC progression and can potentially discover novel drivers
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