Prior-informed NeuralODEs to discover sparse regulatory dynamics from temporal gene expression data

Intekhab Hossain

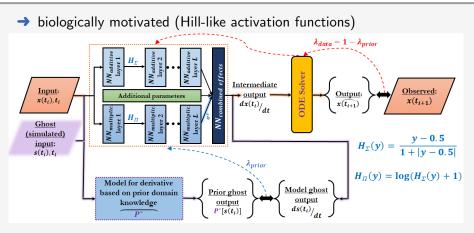
Harvard T.H. Chan School of Public Health

(Department of Biostatistics)

September 13, 2022

Big picture: the problem

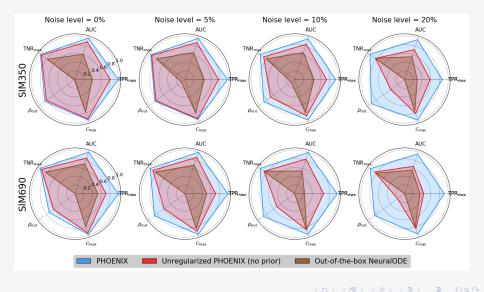
- → We are interested in gene expression dynamics
- 🖈 Utility:
 - 1 understanding the nature of biological systems
 - 2 predicting responses to interventions


Big picture: the problem

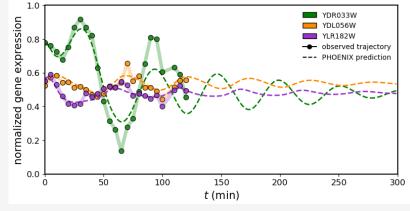
- → We are interested in gene expression dynamics
- 🖈 Utility:
 - 1 understanding the nature of biological systems
 - 2 predicting responses to interventions
- → Formal problem:
 - given:
 - $g_1(t = t_0), g_1(t = t_1), \dots, g_1(t = t_T)$ - $g_2(t = t_0), g_2(t = t_1), \dots, g_2(t = t_T)$
 - $g_2(t = t_0), g_2(t = t_1), \ldots, g_2(t =$
 -
 - $g_n(t = t_0), g_n(t = t_1), \ldots, g_n(t = t_T)$

• estimate **dynamics functions** (i.e. ODEs) f_1, f_2, \ldots, f_n , where:

- $dg_1/dt = f_1(g_1, g_2, \dots, g_n, t)$ - $dg_2/dt = f_2(g_1, g_2, \dots, g_n, t)$
- $ag_2/dt = t_2(g_1, g_2, \ldots, g_n, t)$
- $dg_n/dt = f_n(g_1, g_2, ..., g_n, t)$


PHOENIX architecture

- biologically explainable (prior domain knowledge)
- PHOENIX = Prior-informed Hill-like ODEs to Estimate Network Integrals with eXplainability

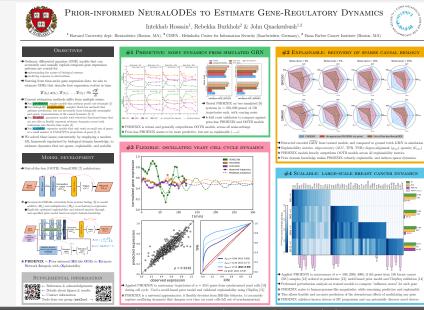

2 / 5

PHOENIX outperforms OOTB models on synthetic data

PHOENIX flexibly estimates yeast cell cycle dynamics

- → Microarray expression for 3551 genes from synchronized yeast cells
- → Prior model based on motif map of promoter targets
- ➔ Explainability validation = ChipSeq data

★ Validation $R^2 = 85\%$; AUC (explainability) = 0.86


PHOENIX scales to human breast cancer dynamics

- → Micro-array expression for 11151 genes from breast cancer cells across 186 patients ordered in psuedotime
- Prior model: used motif map of promoter targets; validation: ChIP-seq data from the MCF7 (breast cancer) cell line in ReMap2018

Number of genes	Val. set R^2	AUC	Runtime(AWS \$)
500	99%	0.91	0.06
2000	98%	0.91	0.16
4000	97%	0.86	0.28
11165	97%	0.81	1.63

☆ Scaling allows discovery of candidate genes for novel drivers of breast cancer progression

Thank you! (poster #40)

Intekhab Hossain | Harvard T.H. Chan School of Public Health (Department of Biostatistics) | September 13, 2022