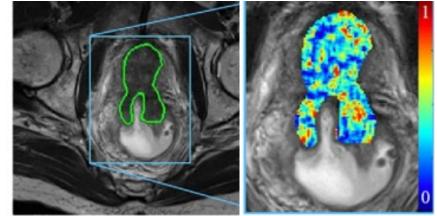
Session: Lightning talks – day 1

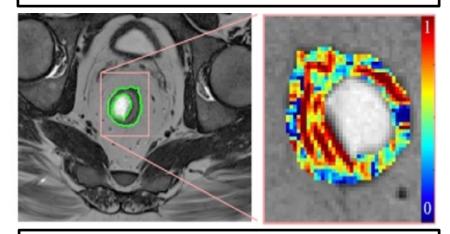
RadxTools for assessing tumor treatment response on imaging

Hyemin Um and Thomas DeSilvio, Andrew Janowczyk, Manmeet Ahluwalia, Sharon Stein, Anant Madabhushi, Pallavi Tiwari, and Satish E. Viswanath

Case Western Reserve University, Cleveland, OH

September 13, 2022





The Challenge: Identifying Treatment Response

- 1.6 million patients in U.S. undergo chemotherapy or radiation as first-line cancer treatment
- Expert identification of responder vs. non-responder on post-treatment imaging is challenging
- Unmet need for image analytics tools to quantify treatment response in oncology via routine imaging

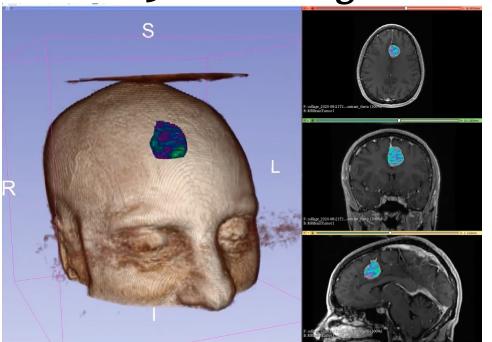
Responder

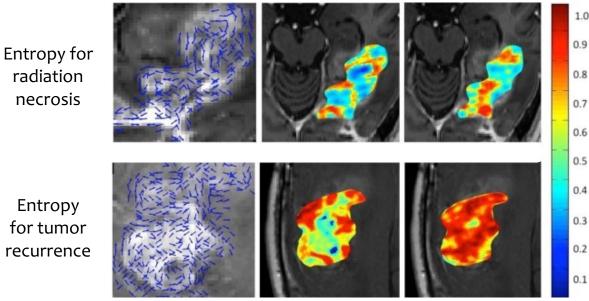
Non-responder

Adapted from Antunes et al. JMRI 2020

RadxTools

- Suite of 3 open-source tools to characterize tumor treatment response on standard-of-care MR/CT imaging
- 1. RadTx capture subtle lesion perturbations in response to therapy
 - CoLlAGe
 - Topology
- 2. RadPathFuse MRI-histopathology co-registration
- **3.** RadQC quality control of radiomic features
- Integrated into informatics platforms for widespread use by the radiomics/imaging community and oncology working groups





RadTx: CoLlAGe Module

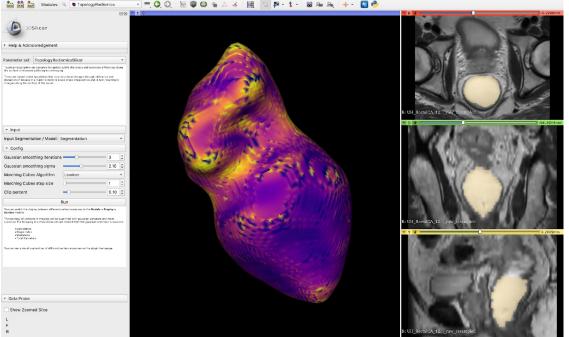
3D Slicer Plugin

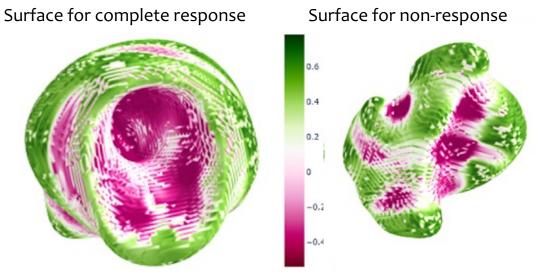
Use Case: Brain Tumors

CoLlAGe features shown to distinguish radiation effects from recurrent tumor on post-treatment T1w MRI with an accuracy of 88.5% [1].

Purpose: Measure anisotropic differences in disease pathologies via local entropy of voxel-level gradient orientations

Available Platforms: Python PIP, 3D Slicer, CapTK





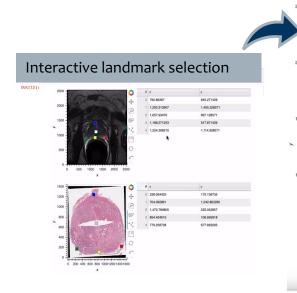
RadTx: Topology Module

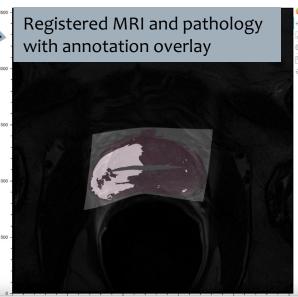
3D Slicer Plugin

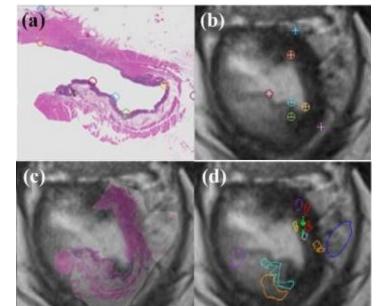
Use Case: Rectal Cancer

Tumor topology features predict pathologic complete response to neoadjuvant CRT on pre-treatment T2w MRI with an AUC of 0.95 [2].

Purpose: Quantify morphometric sharpness and surface curvature differences between responders vs. non-responders to treatment **Available Platforms:** Python PIP, 3D Slicer, Jupyter Notebook







RadPathFuse

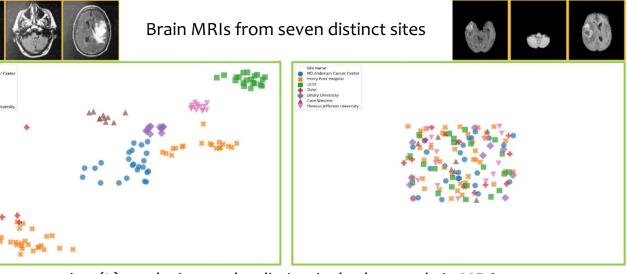
Jupyter Notebook

Use Case: Rectal Cancer

Co-registered pathology and MRI sections (c-d) reveal excellent structural alignment, with a registration error of 2-3 pixels [3]. Landmarks used for registration displayed in different colors on the pathology slide (a) and MR slice (b).

Purpose: Interactive workflow to generate deeply annotated pathologyvalidated radiographic datasets via rigorous co-registration of MRI/CT and histopathology specimens

Available Platforms: Jupyter Notebook



RadQC: MRQy

Python PIP

	†↓	MFR	†1	MFS	Ť.	VRX 11	VRY	VRZ 11	ROWS 11	COLS	11 TR	↑↓ TE ↑↓	NUM 11	Сору
02-0027		GE MEDICAL S	YSTEMS	3		0.47	0.47	5	512	512	816.66	12	23	Save
02-0033	GE MEDICAL SYSTEMS		1.5		0.78	0.78	5	256	256	583.33	8	23	Delete	
GA-02-0034 GE MEDICAL ST		YSTEMS	1.5		0.78	0.78	5	256	256	616.66	9	24	Deselect	
A-02-0037		GE MEDICAL SYSTEMS		1.5		0.78	0.78	5	256	256	583.33	8	•	Tags 👻
1	MEAN	t1	RNG	VAR	CV	1	СРР		PSNR	11 SNR	1 11	SNR2 SNR3		Сору
02-0027	1210.6	1210.6263386412925 5181.27272727272727		450916.8128200274	60.56771573969184		0.000820723446932706		15.7638266069	26852 20.1	01294910179853	132.15972884811	62 7.02636	Save
02-0033	427.07	427.07797565855554 1427.8636363		46177.24478284653	50.463776311142254		0		12.191513303148822 9.642989683447636		42.35914774098024 3.92951		Delete	
02-0034	736.75	3184342762	2831.7391304347825	193659.141472918	60.86	563737533115	0.024613504824431046		12.6245829909	45127 8.76	4558351773715	41.576735911505	715 4.69457	Deselect
-02-0037 385.6924992		24992365628	1263.681818181818182	46902.33535542241 55.3		70482956895	0		11.3284936255	08358 9.89	3575827755594	40.677980260397	87 4.23687	Measures *
Bar (Chart	RY URZ	ROW5 COL5	TR TE NU	I.500	6.000	74V 00.000	CV CPP 0.25 0.20-	PSNR SI	NR1 SNR	2 SNR3 SN 200 150	184 CNR (1 200 0.3	VP CIV 26	EFC 100.000 F

Use Case: TCGA-GBM

Before processing (L), each site can be distinctively clustered via MRQy measures, revealing potential batch effects. After processing (R), the data fall within a single merged cluster [4].

Purpose: Enables quality control of MRI data to quantify and evaluate impact of imaging and institutional variations (e.g., scanners, protocols) **Available Platforms:** Python PIP

Acknowledgements

- National Cancer Institute
 1U01CA248226-01
- Case Western Reserve University
- University Hospitals Cleveland Medical Center
- University of Wisconsin-Madison
- Miami Cancer Institute
- Emory University
- The Georgia Institute of Technology

References

- [1] Prasanna, P., Tiwari, P., & Madabhushi, A. (2016). "Co-occurrence of Local Anisotropic Gradient Orientations (CoLlAGe): A new radiomics descriptor". Scientific Reports, 6:37241.
- [2] Singh, S, DeSilvio, T, Purysko, A, Paspulati, RM, Friedman, K, Liska, D, Stein S, Kirshnamurthi, SS, Viswanath, SE "Computerized features of tumor diversity on pre-chemoradiation MRI are associated with pathologic complete response in rectal cancers: A multi-institutional study". Journal of Clinical Oncology, 2022, 40:16_suppl, 3608-3608.
- [3] Antunes, JT, Viswanath, SE, Brady, JT, Crawshaw, B, Ros, P, Steele, S, Delaney, CP, Paspulati, RM, Willis, JE, Madabhushi, A, "Coregistration of Preoperative MRI with Ex Vivo Mesorectal Pathology Specimens to Spatially Map Post-treatment Changes in Rectal Cancer Onto In Vivo Imaging: Preliminary Findings", Acad Radiol, 2018 Jul;25(7):833-841.
- [4] Sadri, AR, Janowczyk, A, Zou, R, Verma, R, Beig, N, Antunes, J, Madabhushi, A, Tiwari, P, Viswanath, SE, "Technical Note: MRQy An open-source tool for quality control of MR imaging data", Med. Phys., 2020, 47: 6029-6038. <u>https://doi.org/10.1002/mp.14593</u>

