Welcome

NCI Data Science Learning Exchange

GETTING STARTED

LEARNING RESOURCES ▼

COLLABORATION

N EVE



Today's Presenter

George Zaki, PhD Bioinformatics Manager George.Zaki@nih.gov

Strategic and Data Science Initiatives (SDSI) Team Biomedical Informatics and Data Science (BIDS)

https://tinyurl.com/yxn5nwk9

Exploratory Data Analysis of Clinical Data using Pandas, Scikit-learn, and Seaborn

George Zaki, Ph.D.

Biomedical Informatics and Data Science (BIDS)

August 6, 2020

The Frederick National Laboratory is a Federally Funded Research and Development Center operated by Leidos Biomedical Research, Inc., for the National Cancer Institute

DEPARTMENT OF HEALTH AND HUMAN SERVICES • National Institutes of Health • National Cancer Institute

NCI Data Science Learning Exchange

Website: https://cbiit.github.io/
p2p-datasci/

- Peer-to-peer community
- Connects NCI staff learning data science with each other
- See Resources & engage!
 - Website
 - Microsoft Teams

Join the MS Team! General Channel + 17 Topic-specific Channels! Laboratory

https://bit.ly/2VjpFHn

Intro to Data Science

Biowulf + HPC Systems

Bioinformatics

C-based languages

Command Line & Shell Scripting

Data Pipelines & Workflow Management

R

SAS

Image Analysis

Java

Machine Learning & Al

Math for MI

Python

Database

In each channel:

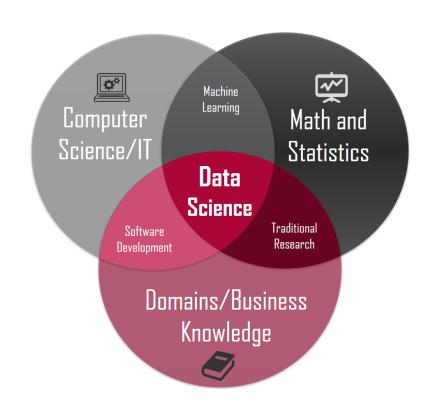
- Posts open discussions; Q & A; recommendations; resources
- **Files**
- Wiki

Data Science Initiative: NCI CBIIT, FNL

Leverage breakthrough advancements in scientific computing and data science to help NCI scientific staff advance basic research, understanding, and treatments in cancer.

Thanks to the team:
Lynn Borkon, Amar Khalsa,
Laurie Morrissey, Carl McCabe,
Ravi Ravichandran, Eric
Stahlberg, Andrew Weisman

george.zaki@nih.gov



Know about you

- Have you used exploratory data analysis in your research?
 - If yes, for what?

What would like to get out of this workshop?

Exploratory Data Analysis

- What?
 - Summarize and visualize statistical characteristics of data sets.
- Why?
 - Find outliers and replicates, missing values, cleanup data
 - Understand relationships, suggest hypothesis
- How?
 - Single variable, bivariate and multivariate plots, data imputation, clustering, scaling, correlation, dimensionality reduction, etc.

'Exploratory data analysis' is an attitude, a state of flexibility, a willingness to look for those things that we believe are not there, as well as those we believe to be there.'

John Tukey

SUMMARY STATISTICS

TRANSFORMATIONS

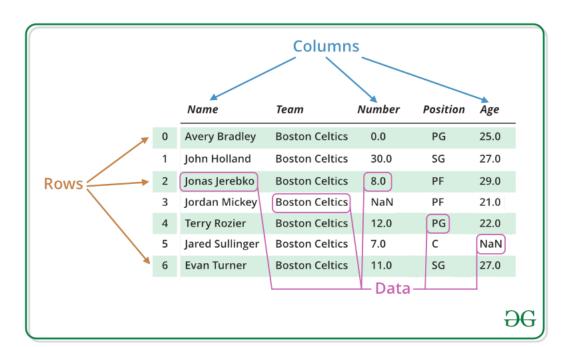
VISUALIZATION

IMPUTATION

DIMENSIONALITY REDUCTION

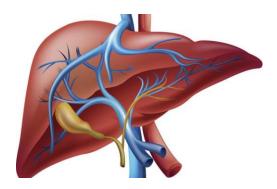
Data Ingestion

- Data sources: own experiments, online portal, data repositories.
- Original data might need to be processed/cleaned. Generate gene expression count, remove artifact from processing tools, etc.
- Very important to clearly document/version control what you have done
- Once the data is in a form of: Samples * features, then in can be loaded in memory as dataframe (e.g. Pandas)



The clinical data for this workshop

- Breast Cancer Wisconsin (Diagnostic) Data Set
- Cervical cancer (Risk Factors) Data Set
- Hepatitis C Virus (HCV) for Egyptian patients Data Set
- Each one of these datasets would highlight different aspects on the application of EDA to better understand the data.
- Github examples: https://github.com/georgezakinih/exploratory-data-analysis



Summary Statistics

Pandas' head, describe, summary, and info

```
raw_data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1385 entries, 0 to 1384
Data columns (total 29 columns):
     Column
                                       Non-Null Count
#
                                                       Dtype
                                       1385 non-null
    Age
                                                       int64
     Gender
                                       1385 non-null
                                                       int64
                                       1385 non-null
     BMI
                                                       int64
                                       1385 non-null
                                                       int64
     Fever
                                       1385 non-null
                                                       int64
    Nausea/Vomting
 5
     Headache
                                       1385 non-null
                                                       int64
                                       1385 non-null
     Diarrhea
                                                       int64
     Fatigue & generalized bone ache 1385 non-null
                                                       int64
     Jaundice
 8
                                       1385 non-null
                                                       int64
                                       1385 non-null
     Epigastric pain
                                                       int64
```


Categorical versus Numerical Data

Numerical data:

- Can be positive integer, integer, real, have a specific domain
- Have statistics: mean, median, 25, 75 percentiles, standard deviation, minimum, maximum

Encoding of categorical features:

- Usually represented as integer and unique string.
- Might need to be coded for subsequent machine learning tasks

One hot coding: pd.get_dummies (df['Category'], prefix='Cat')

Original column		New coded columns				
	Category	Cat_A	Cat_B	Cat_C		
	Α	1	0	0		
	В	0	1	0		
	С	0	0	1		
	Α	1	0	0		

Map, apply functions

- df.apply: Applies any user defined transformation, aggregation, split on a data frame or a series. Can be used row or column wise.
- Series.map: Map every value of a series to another values.

```
699, Uniformity of Cell Shape
699, Marginal Adhesion
699, Single Epithelial Cell Size
683, Bare Nuclei
699, Bland Chromatin
699, Normal Nucleoli
699, Mitoses
699, Class
```

```
def replace_NaN(x, median):
    if np.isnan(x):
        return median
    else:
        return x
```

- Calculate median: median = 1
- Replace NaN (e.g. missing) values with 1

```
data["Bare Nuclei"] =
   data["Bare Nuclei"].map(lambda x: replace_NaN(x,1))
```

When to use df.apply? Here is a good discussion

Slicing and Dicing

Subsetting:

```
- raw_data[(raw_data.Age < 40)]]
- raw_data[(raw_data.Age < 40)] & ( raw_data.BMI < 20 ) ]
Returns a subset of the data frame rows that satisfy the condition</pre>
```

- Here is a nice <u>tutorial</u>
- df.groupby: Creates summary statistics per group in the data.

```
raw_data.groupby(["Gender"])['Age '].mean()

Gender
1    46.404526
2    46.230088
Name: Age , dtype: float64
```


Boundary checks

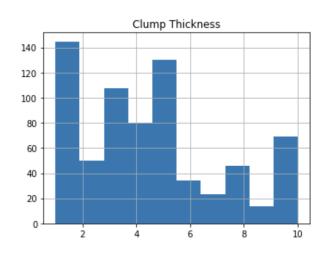
- Sometimes, the values will not fit a meaningful range, the distribution might be not be normal.
- pd.crosstab and df.describe functions can help spot inconsistent data.

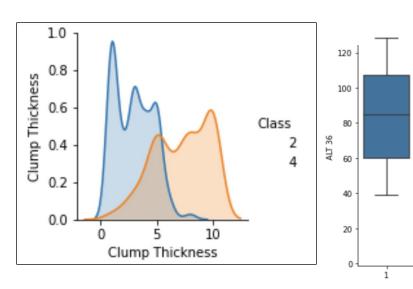
col_0	% observations	
Smokes		
0.0	0.841492	
1.0	0.143357	
?	0.015152	
# of un	ique values	3

	Clump Thickness	Uniformity of Cell Size	Uniformity of Cell Shape	Marginal Adhesion	Single Epithelial Cell Size	
count	699.000000	699.000000	699.000000	699.000000	699.000000	6
mean	4.417740	3.134478	3.207439	2.806867	3.216023	
std	2.815741	3.051459	2.971913	2.855379	2.214300	
min	1.000000	1.000000	1.000000	1.000000	1.000000	
25%	2.000000	1.000000	1.000000	1.000000	2.000000	
50%	4.000000	1.000000	1.000000	1.000000	2.000000	
75%	6.000000	5.000000	5.000000	4.000000	4.000000	
max	10.000000	10.000000	10.000000	10.000000	10.000000	

Univariate plots

- These are methods to show the distribution of a single variable.
- Popular methods are histograms, dot plots, box plots, and kernel density plots: df.hist, seaborn.pairplot, seaborn.catplot



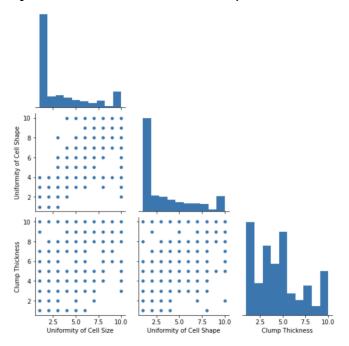


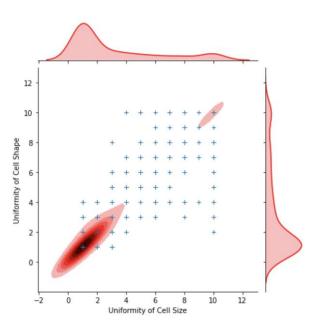
 These plots helps in understanding the assumptions in a model (e.g., normal probability plot) and check the limitations where a model may not fit well the data.

Baselinehistological staging

Bivariate plots

- Scatter plots can highlight the relationship between two variables and possible trends. seaborn.jointplot, seaborn.pairplot
- The components of the trend are: (a) direction (positive or negative), (b) form (linear or curvilinear), and (c) strength (degree of variability around the trend).

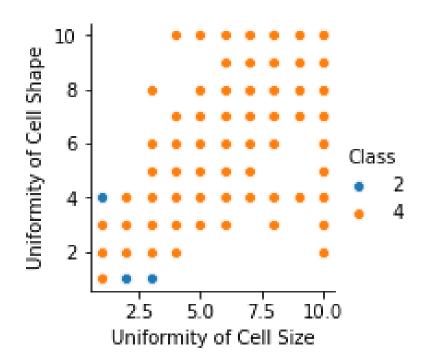




Existence of clusters can also be identified in a scatter plot.

Multivariate

- Exponential number of plots: 3 variables: N³, 4 variables: N⁴
- To limit the number of plots, use insights from the bivariate plots and select few candidates for multivariate you will investigate.
- In Seaborn, we can use 2D plots + the semantics of hue, size, and style to add up to three more variables.



Note that in this scatter plot, the dots with same values are *overlapping*. The data is not that imbalanced.

Missing Data Imputation

- Missing features is a typical phenomena in clinical data.
- Techniques to handle missing features are:
 - Detect and quantify, find systematic bias in missing data
 - Can I predict that data is missed based on other features in the sample?
 - Remove this feature from all the samples
 - Might miss important signal
 - Remove samples with missing features
 - Might introduce bias the samples left (e.g. a specific medical test can be done in sever cases)
 - Keep the feature, but impute its value when missing

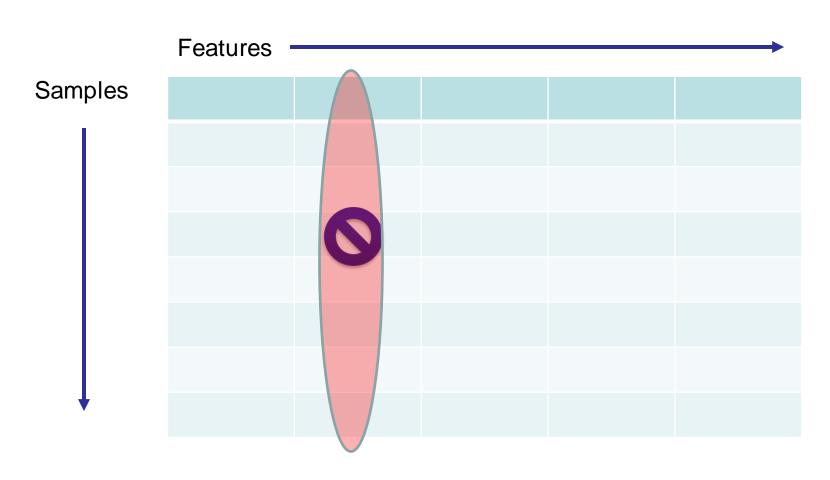
Sklearn's SimpleImputer, IterativeImputer
MissingIndicator, KNNImputer

Missing Data Imputation

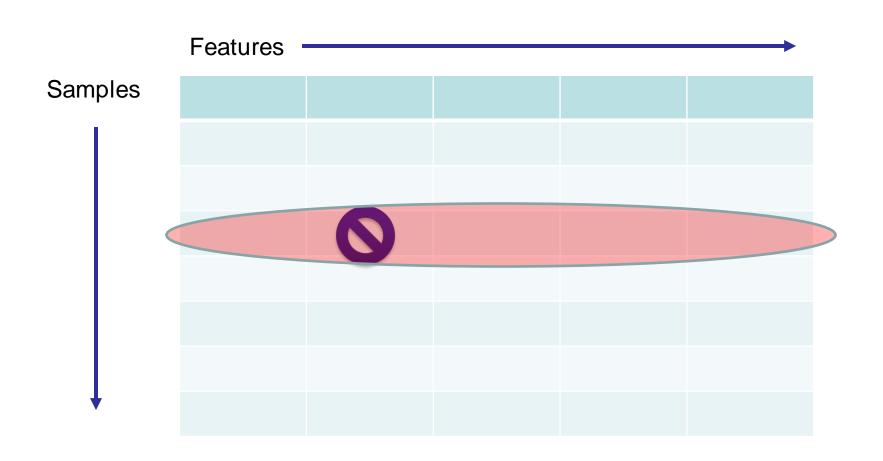
- Keep the feature, but impute its value when missing:
 - Numerical: median, mean, most frequent, constant
 - Categorical: most frequent, create a "missing" category
 - Add extra column indicating when the variable has been imputed
 - Be careful that a ML algorithm can learn this information
 - Impute the value from other features in the same sample
 - Impute the value randomly from the closest set of samples

Sklearn's SimpleImputer, IterativeImputer, MissingIndicator, KNNImputer

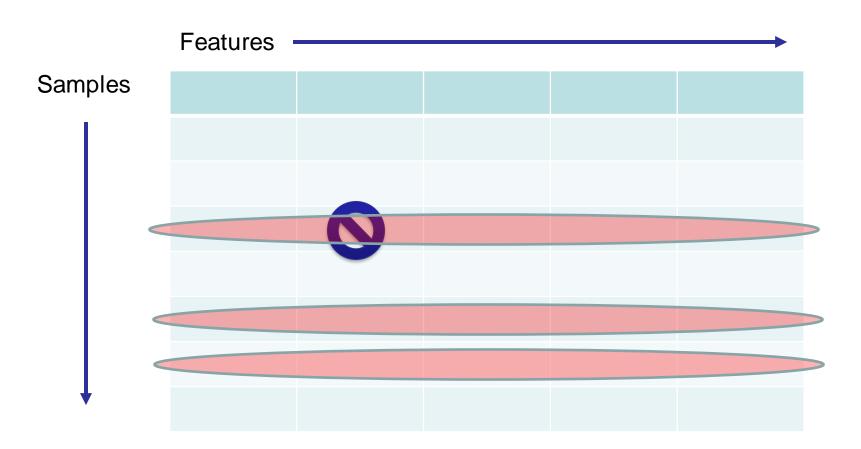
 Warning! Imputation might introduce correlation in some samples. Make sure you understand/quantify the implication of the imputation technique you choose.



Impute using statistics of the features from other samples: mean, median



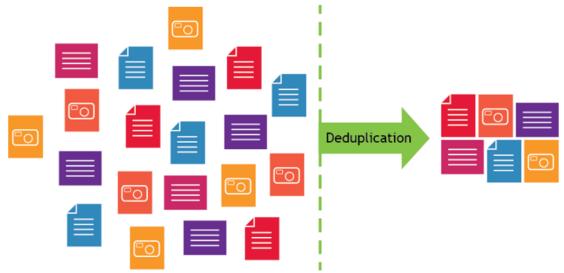
Data Imputation



Infer the missing values from other close samples in the dataset.

Data Duplication

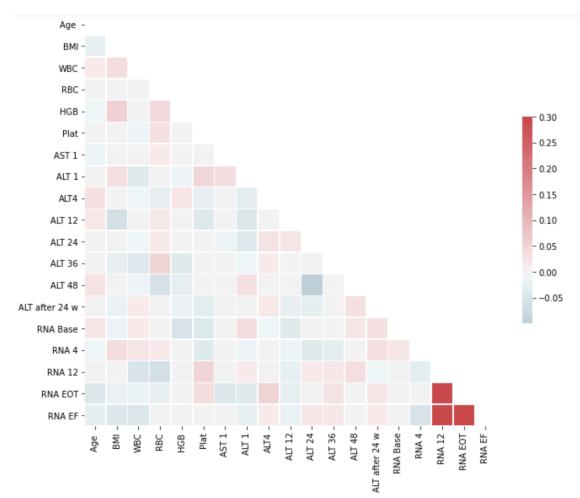
- Duplication of samples can be a result of repeating experiments, or error in the data.
- It is important to identify and quantify duplication specifically if machine learning models will be built later. DataFrame.duplicated
- More importantly, find inconsistency in the data if the features are the same, but the outcomes are different.
 - In this case regression outcomes of duplicate samples can be summarized as mean and variance.



Correlation

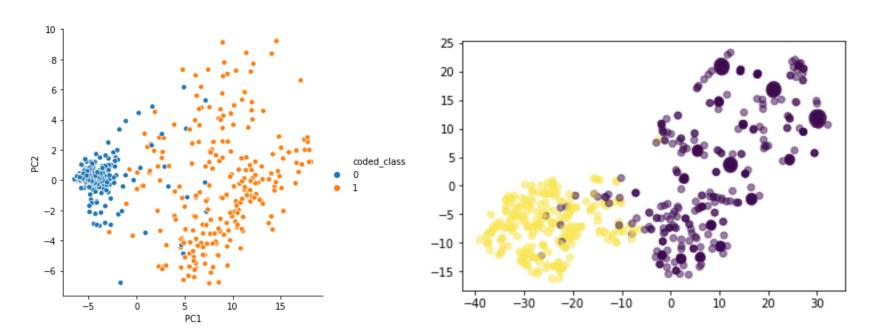
 One common step in feature selection is to remove correlated variables.

 Correlation can be computed using df.corr and visualized using seaborn.diverging_ palette



Dimensionality Reduction

- To visualize raw numeric data on a 2D plot, we need to reduce the dimensions.
- Two popular techniques: Principal Component Analysis (PCA) (linear), and TSNE (non linear)

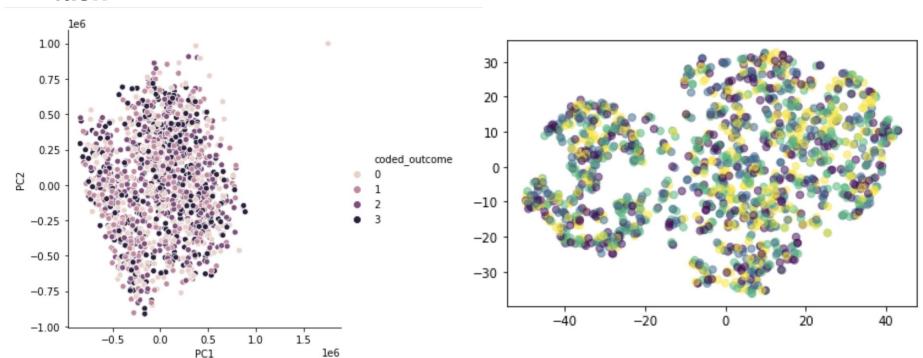


sklearn.decomposition.PCA

sklearn.manifold.TSNE

PCA and TSNE

- In some data, clusters might not always show up.
- Neural network techniques like Autoencoders may help in this task

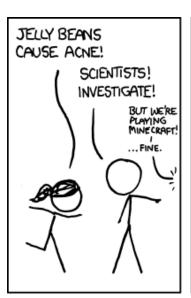


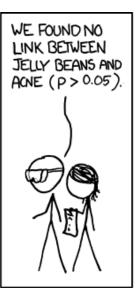
Avoid Data Dredging, p-hacking

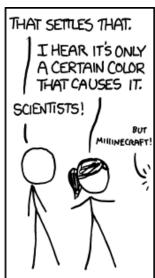
- The purpose of EDA is discovery, whereas the purpose of confirmatory research is validation
- While checking statistical significance between 1000 variables, p value of 5%, with many tests, by chance, 5% will be reported significant.

Mitigation:

- Out of sample tests
- Cross validation
- Bonferroni correction







P-hacking

Frederick National Laboratory for Cancer Research

WE FOUND NO LINK BETWEEN PURPLE JELLY BEANS AND ACNE (P > 0.05).

WE FOUND NO LINK BETWEEN BROWN JELLY BEANS AND ACNE (P>0.05).

WE FOUND NO LINK BETWEEN PINK JELLY BEANS AND ACNE (P>0.05).

WE FOUND NO LINK BETWEEN BLUE JELLY BEANS AND AGNE (P>0.05).

WE FOUND NO LINK BETWEEN TEAL JELLY BEANS AND ACNE (P>0.05).

WE FOUND NO LINK BETWEEN SALMON JELLY BEANS AND AGNE (P>0.05).

WE FOUND NO LINK BETWEEN RED JELLY BEANS AND AONE (P>0.05).

WE FOUND NO LINK BETWEEN TURQUOISE JELLY BEANS AND ACNE (P>0.05).

WE FOUND NO LINK BETWEEN MAGENTA JELLY BEANS AND AONE (P > 0.05).

WE FOUND NO LINK BETWEEN YELLOW JELLY BEANS AND ACNE (P>0.05)

WE FOUND NO LINK BETWEEN GREY JELLY BEANS AND ACNE (P>0.05)

WE FOUND NO LINK BETWEEN TAN JELLY BEANS AND AONE (P>0.05).

WE FOUND NO LINK BETWEEN CYAN JELLY BEANS AND ACNE (P > 0.05).

WE FOUND A LINK BETWEEN GREEN JELLY BEANS AND ACNE (P < 0.05).

WE FOUND NO LINK BETWEEN MAUVE JELLY BEANS AND ACNE (P>0.05).

WE FOUND NO LINK BETWEEN BEIGE JELLY BEANS AND AONE (P > 0.05)

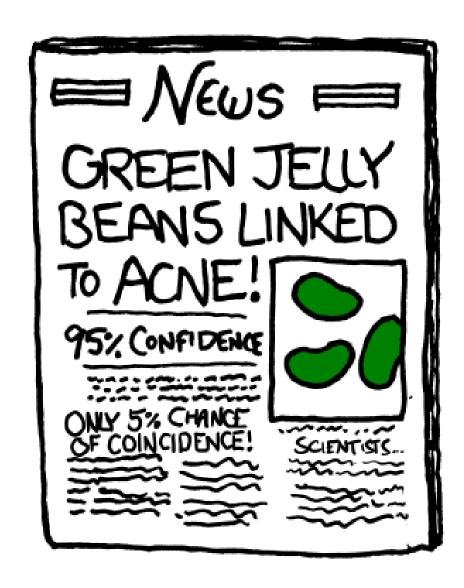
WE FOUND NO LINK BETWEEN LILAC JELLY BEANS AND ACNE (P>0.05)

WE FOUND NO LINK BETWEEN BLACK JELLY BEANS AND ACNE (P > 0.05)

WE FOUND NO LINK BETWEEN PEACH JELLY BEANS AND ACNE (P>0.05).

WE FOUND NO LINK BETWEEN ORANGE JELLY BEANS AND ACNE (P>0.05).

P-Hacking



Summary

- It is important to gather facts about the data before applying machine learning.
- EDA tools and analysis techniques help in identifying trends, problems, and possible hypothesis from the data.
- Many python libraries like pandas, sklearn, and seaborn provide very nice tools to conduct EDA.
- It is important not to torture the data and conduct confirmatory data analysis after hypothesis are generated.

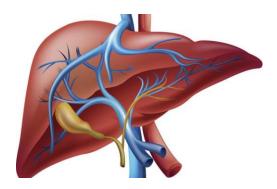
Your feedback is valuable to us!



Thank You!

Hands On

- Breast Cancer Wisconsin (Diagnostic) Data Set
- Cervical cancer (Risk Factors) Data Set
- Hepatitis C Virus (HCV) for Egyptian patients Data Set
- Each one of these datasets would highlight different aspects on the application of EDA to better understand the data.
- Github examples: https://github.com/georgezakinih/exploratory-data-analysis



References & Examples

- Pandas, Seaborn, Matplotlib
- <u>Exploratory Data Analysis</u>, Oxford Bibliographis
- An extensive guide to EDA
- Heart attack risk prediction
- Andrew T. Jebb, Scott Parrigon, Sang Eun Woo, "Exploratory data analysis as a foundation of inductive research", Human Resource Management Review, Volume 27, Issue 2, 2017
- Simmons, J. P., Nelson, L. D., & Simonsohn, U. (2011). "False-Positive Psychology: Undisclosed Flexibility in Data Collection and Analysis Allows Presenting Anything as Significant." Psychological Science, 22(11), 1359–1366.