Innate Immunity, Inflammation and Cancer

Willem Overwijk, Ph.D. **Dpt. of Melanoma Medical Oncology MD** Anderson Cancer Center, Houston, TX

enter

MDAnderson University of Puerto Rico

/laking Cancer History

Piled Higher and Deeper by Jorge Cham

=

.

=

=

-

.

=

=

. = = = . = 8 = = . = . = = =

www.phdcomics.com

To play, simply print out this bingo sheet and attend a departmental seminar.

Mark over each square that occurs throughout the course of the lecture.

The first one to form a straight line (or all four corners) must yell out BINGO!! to win!

	IN	G	0
Repeated use of "um…"	Speaker sucks up to host professor	Host Professor falls asleep	Speaker wastes 5 minutes explaining outline
Work ties in to Cancer/HIV or War on Terror	"et al."	You're the only one in your lab that bothered to show up	Blatant typo
"The data <i>clearly</i> shows"	FREE Speaker runs out of time	Use of Powerpoint template with blue background	References Advisor (past or present)
Bitter Post-doc asks question	"That's an interesting question"	"Beyond the scope of this work"	Master's student bobs head fighting sleep
Cell phone goes off	You've no idea what's going on	"Future work will"	Results conveniently show improvement
	Repeated use of "um" Work ties in to Cancer/HIV or War on Terror "The data <i>clearly</i> shows" Bitter Post-doc asks question Cell phone goes off	Repeated use of "um"Sucks up to host professorWork ties in to Cancer/HIV or War on Terror"et al.""The data clearly shows"FREE Speaker runs out of timeBitter Post-doc asks question"That's an interesting question"Cell phone goes offYou've no idea what's going on	Repeated use of "um"Sucks up to host professorProfessor falls asleepWork ties in to Cancer/HIV or War on Terror"et al."You're the only one in your lab that bothered to show up"The data clearly shows"FREE Speaker runs out of timeUse of Powerpoint template with blue backgroundBitter Post-doc asks question"That's an interesting question""Beyond the scope of this work"Cell phone goes offYou've no idea what's going on"Future work work"

WWW. PHDCOMICS. COM

Innate Immunity and Inflammation

- Definitions
- Cells and Molecules
- Innate Immunity and Inflammation in Cancer
- Bad Inflammation
- Good Inflammation
- Therapeutic Implications

Innate Immunity and Inflammation

Definitions

- Cells and Molecules
- Innate Immunity and Inflammation in Cancer
- Bad Inflammation
- Good Inflammation
- Therapeutic Implications

 Innate Immunity: Immunity that is naturally present and is not due to prior sensitization to an antigen; generally nonspecific. It is in contrast to acquired/adaptive immunity. Innate Immunity: Immunity that is naturally present and is not due to prior sensitization to an antigen; generally nonspecific. It is in contrast to acquired/adaptive immunity.

- Inflammation: a local response to tissue injury
 - Rubor (redness)
 - Calor (heat)
 - Dolor (pain)
 - Tumor (swelling)

"Innate Immunity" and "Inflammation" are vague terms

 Specific cell types and molecules orchestrate specific types of inflammation "Innate Immunity" and "Inflammation" are vague terms

 Specific cell types and molecules orchestrate specific types of inflammation

Innate Immunity A ≠ Innate Immunity B

Inflammation A ≠ Inflammation B

"Innate Immunity" and "Inflammation" can mean many things

• Specific cell types and molecules orchestrate specific types of inflammation

- Innate Immunity A ≠ Innate Immunity B
- Inflammation A ≠ Inflammation B

 Some immune responses promote cancer, others suppress it

Innate Immunity and Inflammation

Functions:

- Rapid response to tissue damage
- Limit spread of infection
- Initiate adaptive immune response (T, B)
- Initiate tissue repair

Normal flora Local chemical factors Phagocytes (especially in lung)

Janeway, Immunobiology, 7th Ed.

Protection against infection

Normal flora Local chemical factors Phagocytes (especially in lung) Wound healing induced Antimicrobial proteins and peptides, phagocytes, and complement destroy invading microorganisms Activation of γ:δ T cells? Complement, cytokines, chemokines, Phagocytes, NK cells Activation of macrophages Dendritic cells migrate to lymph nodes to initiate adaptive immunity Blood clotting helps limit spread of infection

Protection against infection

Normal flora Local chemical factors Phagocytes (especially in lung)

Wound healing induced Antimicrobial proteins and peptides, phagocytes, and complement destroy invading microorganisms Activation of γ:δ T cells?

Complement, cytokines, chemokines, Phagocytes, NK cells Activation of macrophages Dendritic cells migrate to lymph nodes to initiate adaptive immunity **Blood clotting helps limit** spread of infection

Infection cleared by specific antibody, T-cell dependent macrophage activation and cytotoxic T cells

Innate Immunity and Inflammation

Definitions

- Cells and Molecules
- Innate Immunity and Inflammation in Cancer
- Bad Inflammation
- Good Inflammation
- Therapeutic Implications

Innate Immune Molecules: Cyclooxygenase-2 (COX-2)

Recognizeinflammation

CauseInflammation

Innate Immune Molecules: Complement System

- Recognizepathogensantibodies
- lectins

Cause

- pathogen clearance
- chemotaxis
- Inflammation

Janeway, *Immunobiology*, 7th Ed.

Innate Immune Molecules: type I IFN(-α, β)

- Induced by infection/damage
- Antiviral/Antiproliferative
- Increase innate and adaptive immunity
- Cause inflammation

Innate Immune Cells

Innate Immune Cells

Janeway, Immunobiology, 7th Ed.

Innate Immune Cells

Innate Immune Cells: granulocytes

Recognize

- pathogens
- antibodies

Cause

- pathogen clearance
- inflammation

Innate Immune Cells: phagocytes

Recognizepathogensantibodies

Antigen uptake in peripheral sites

Antigen presentation

Cause

pathogen clearance
adaptive immunity
inflammation

Innate Immune Cells: NK, NKT and $\gamma\delta$ T cells

Recognize

- pathogens
- stressed cells
- "altered self"

Cause

- pathogen clearance
- stressed/abnormal cell clearance
- Inflammation

Danger signals start inflammation

PATHOGENS

DAMAGE

Rubartelli & Lotze, Trends in Immunology 2007

Danger signals start inflammation

PATHOGENS

DAMAGE

Rubartelli & Lotze, Trends in Immunology 2007

Receptors sense Danger: Pathogens

Kawai & Akira, Nat. Immunol. 2010

Receptors sense Danger: Damage

Kawai & Akira, Nat. Immunol. 2010

Innate Immunity and Inflammation

Definitions

- Cells and Molecules
- Innate Immunity and Inflammation in Cancer
- Bad Inflammation
- Good Inflammation
- Therapeutic Implications

Innate Immunity and Inflammation in Cancer

• Outcomes vary:

- Promote cancer (Bad inflammation)

- Suppress cancer (Good inflammation)

Innate Immunity and Inflammation

Definitions

- Cells and Molecules
- Innate Immunity and Inflammation in Cancer
- Bad Inflammation
- Good Inflammation
- Therapeutic Implications

Bad Inflammation Causes Cancer

DANGER

cellular damage caused by

- pathogens
- physical damage
- chemicals
- UV
- etc

COLLATERAL DAMAGE

DATIER ----- IMMUNE RESPONSE INFLAMMATION

COLLATERAL DAMAGE

IMMUNE RESPONSE INFLAMMATION
COLLATERAL DAMAGE

IMMUNE RESPONSE INFLAMMATION

COLLATERAL DAMAGE

IMMUNE RESPONSE INFLAMMATION

CHRONIC COLLATERAL DAMAGE

CHRONIC IMMUNE RESPONSE INFLAMMATION

CHRONIC COLLATERAL DAMAGE

CHRONIC

CHRONIC IMMUNE RESPONSE INFLAMMATION

CHRONIC COLLATERAL DAMAGE

CANCER

CHRONIC

DANGER

CHRONIC IMMUNE RESPONSE INFLAMMATION

cancer: a "never-healing wound"

Dvorak, NEJM 1986

Inflammation can Promote Cancer: collaboration with K-ras mutation

no smoking

4 cigarettes per day

K-ras mutation & normal myeloid cells

Takahashi et al., Cancer Cell 2010

Inflammation can Promote Cancer: collaboration with K-ras mutation

no smoking

4 cigarettes per day

K-ras mutation K-ras mutation & + normal myeloid cells IKK^{-/-} myeloid cells

Takahashi et al., Cancer Cell 2010

Inflammation can Promote Cancer: collaboration with K-ras mutation

no smoking

4 cigarettes per day

Takahashi et al., Cancer Cell 2010

Inflammation can Promote Cancer: collaboration with HPV E6/E7 oncogene

De Visser et al., *Cancer Cell* 2005 Andreu et al., *Cancer Cell* 2010

Tumors can induce bad inflammation

Apoptotic Death of CD8⁺ T Lymphocytes After Immunization: Induction of a Suppressive Population of Mac-1⁺/Gr-1⁺ Cells¹

Vincenzo Bronte,²* Michael Wang,[†] Willem W. Overwijk,* Deborah R. Surman,* Federica Pericle,[‡] Steven A. Rosenberg,* and Nicholas P. Restifo³*

The Journal of Immunology, 1998, 161: 5313-5320.

Tumors can induce bad inflammation

Bronte et al., J. Immunol. 1999

Tumors can induce bad inflammation

Tumors can induce bad inflammation Oncogenic STAT3

Yu et al., Nat. Rev. Cancer 2009

Tumors can induce bad inflammation Oncogenic STAT3

Yu et al., Nat. Rev. Cancer 2009

Mutations can Drive Bad Inflammation

Mutated BRAF → tumor cells produce bad, imunosuppressive cytokines

Sumimoto et al., J. Exp. Med. 2006

Mutations can Drive Bad Inflammation

♥ block production of good cytokines in DCs

Sumimoto et al., J. Exp. Med. 2006

Mutations can Drive Bad Inflammation

Mutated BRAF → tumor cells produce bad, imunosuppressive cytokines

promote expression of immunosuppressive molecules

Inflammation and Cancer: A Vicious Cycle

Classic Hallmarks of Cancer

Mantovani et al., *Nature* 2009 Hanahan & Weinberg, *Cell* 2000

Inflammation is (now) a Classic Hallmark of Cancer

Mantovani et al., *Nature* 2009 Hanahan & Weinberg, *Cell* 2000

Inflammation is (now) a Classic Hallmark of Cancer

Mantovani et al., *Nature* 2009 Hanahan & Weinberg, *Cell* 2000

Innate Immunity and Inflammation

Definitions

- Cells and Molecules
- Innate Immunity and Inflammation in Cancer
- Bad Inflammation
- Good Inflammation
- Therapeutic Implications

Good vs. Bad Inflammation in Cancer

Immunity, Inflammation, and Cancer

Sergei I. Grivennikov,¹ Florian R. Greten,² and Michael Karin^{1,*}

Cell 140, 883-899, March 19, 2010

Cancer and Inflammation: Promise for Biologic Therapy

Sandra Demaria,* Eli Pikarsky,† Michael Karin,‡ Lisa M. Coussens,§ Yen-Ching Chen, Emad M. El-Omar,¶ Giorgio Trinchieri,# Steven M. Dubinett, ** Jenny T. Mao, †† Eva Szabo,‡‡ Arthur Krieg,§§ George J. Weiner, Bernard A. Fox,¶¶ George Coukos,## Ena Wang,*** Robert T. Abraham,††† Michele Carbone,‡‡‡ and Michael T. Lotze§§§

J Immunother • Volume 33, Number 4, May 2010

IFN-γ Suppresses Human Tumor Development

Multiple cutaneous squamous cell carcinomas in a patient with interferon γ receptor 2 (IFN γ R2) deficiency

IFN-γ Suppresses Human Tumor Development

Multiple cutaneous squamous cell carcinomas in a patient with interferon γ receptor 2 (IFN γ R2) deficiency

At 17 years of age, the patient developed multifocal Squamous Cell Carcinomas on the face and both hands. Despite local tumour excision, multiple lesions occurred and the patient died at 20 years of age of disseminated SCC. Inherited disorders of IFN- γ -mediated immunity may predispose patients to SCC.

Toyoda et al., J. Med. Genetics 2010

Human Immune System can Suppress Existing Tumors for Years

- 1982: patient with primary, resected melanoma
- 1997: declared disease-free and "cured"
- 1998: died of brain hemorrhage, donated kidneys
- 2000: kidney recipient 1 died of metastatic donor melanoma
 - kidney recipient 2 taken off immunosuppression; start IFN- α
 - kidney recipient 2 rejects kidney and melanoma

Human Immune System can Suppress Existing Tumors for Years

- 1982: patient with primary, resected melanoma
- 1997: declared disease-free and "cured"
- 1998: died of brain hemorrhage, donated kidneys
- 2000: kidney recipient 1 died of metastatic donor melanoma
 - kidney recipient 2 taken off immunosuppression; start IFN- α
 - kidney recipient 2 rejects kidney and melanoma

Post-transplant Immunosuppression Increases Cancer Incidence

Type I IFNs Suppress Growth of Transplanted Tumors

IFN-α treatment enhances anticancer vaccination

Sikora et al. J. Immunol. 2009

IFN-α treatment enhances anticancer vaccination

CpG Causes Tumor Inflammation and Intratumoral T cell Accumulation

Intratumoral PBS

Intratumoral CpG

Intravenous CpG

Lou et al., J. Immunother. 2011

CpG Causes Tumor Inflammation and Intratumoral T cell Accumulation

Lou et al., J. Immunother. 2011

Choice of vaccine adjuvant controlsT cell trafficking to tumor

Adapted from Grivennikov et al. Cell 2010
Bottom Line: Inflammation can be Good or Bad: Pro or Anti-Tumor

Table 1. Roles of Different Subtypes of Immune and Inflammatory Cells in Antitumor Immunity and Tumor-Promoting Inflammation		
Cell Types	Antitumor	Tumor-Promoting
Macrophages, dendritic cells, myeloid-derived suppressor cells	Antigen presentation; production of cytokines (IL-12 and type I IFN)	Immunosuppression; production of cytokines, chemokines, proteases, growth factors, and angiogenic factors
Mast cells		Production of cytokines
B cells	Production of tumor-specific antibodies?	Production of cytokines and antibodies; activation of mast cells; immunosuppression
CD8 ⁺ T cells	Direct lysis of cancer cells; production of cytotoxic cytokines	Production of cytokines?
CD4 ⁺ Th2 cells		Education of macrophages; production of cytokines; B cell activation
CD4 ⁺ Th1 cells	Help to cytotoxic T lymphocytes (CTLs) in tumor rejection; production of cytokines (IFN γ)	Production of cytokines
CD4 ⁺ Th17 cells	Activation of CTLs	Production of cytokines
CD4 ⁺ Treg cells	Suppression of inflammation (cytokines and other suppressive mechanisms)	Immunosuppression; production of cytokines
Natural killer cells	Direct cytotoxicity toward cancer cells; production of cytotoxic cytokines	
Natural killer T cells	Direct cytotoxicity toward cancer cells; production of cytotoxic cytokines	
Neutrophils	Direct cytotoxicity; regulation of CTL responses	Production of cytokines, proteases, and ROS

Grivennikov et al. Cell 2010

COX-2 inhibitor

Aspirin, Celecoxib (colorectal)

- COX-2 inhibitor
- VEGF blocker

Aspirin, Celecoxib (colorectal) Bevacizumab, Sorafenib (several)

- COX-2 inhibitor
- VEGF blocker
- IL-1 β blocker

Aspirin, Celecoxib (colorectal) Bevacizumab, Sorafenib (several) IL-1Ra (MM)

- COX-2 inhibitor
- VEGF blocker
- IL-1 β blocker
- Cytokine Regulators

Aspirin, Celecoxib (colorectal) Bevacizumab, Sorafenib (several) IL-1Ra (MM) Lenalidomide (MDS, MM)

- COX-2 inhibitor
- VEGF blocker
- IL-1 β blocker

Aspirin, Celecoxib (colorectal) Bevacizumab, Sorafenib (several) IL-1Ra (MM)

- Cytokine Regulators Lenalidomide (MDS, MM)
- Kill Helicobacter Pylori Clarithrom./Amoxicillin (gastric)

- COX-2 inhibitor
- VEGF blocker
- IL-1 β blocker

- Aspirin, Celecoxib (colorectal) Bevacizumab, Sorafenib (several) IL-1Ra (MM)
- Cytokine Regulators Lenalidomide (MDS, MM)
- Kill Helicobacter Pylori Clarithrom./Amoxicillin (gastric)
- Remove suppressors Cycl/Fludar + T cells (melanoma)

Aspirin, Celecoxib (colorectal)

Bevacizumab, Sorafenib (several)

- COX-2 inhibitor
- VEGF blocker
- IL-1 β blocker
- Cytokine Regulators Lenalidomide (MDS, MM)
- Kill Helicobacter Pylori Clarithrom./Amoxicillin (gastric)

IL-1Ra (MM)

- Remove suppressors Cycl/Fludar + T cells (melanoma)
- Cytotoxic Therapy? Radiation/Chemother. (all cancers)

- COX-2 inhibitor
- VEGF blocker
- IL-1β blocker
- Cytokine Regulators Lenalidomide (MDS, MM)
- Kill Helicobacter Pylori Clarithrom./Amoxicillin (gastric)

IL-1Ra (MM)

- Remove suppressors Cyc
- Cytotoxic Therapy?
- Targeted Therapy?
- Cycl/Fludar + T cells (melanoma)
- Radiation/Chemother. (all cancers)
- TKI inhibitors (many cancers)

Aspirin, Celecoxib (colorectal)

Bevacizumab, Sorafenib (several)

• Bacteria BCG (bladder)

- Bacteria BCG (bladder)
- TLR agonists
- Imiquimod (basal cell carcinoma) CpG (B cell lymphoma)

- Bacteria
 BCG (bladder)
- TLR agonists
- Imiquimod (basal cell carcinoma) CpG (B cell lymphoma)

• Cytokines

IL-2 (melanoma, renal) IFN- α (melanoma, renal, CML)

- Bacteria
 BCG (bladder)
- TLR agonists Imi
- Imiquimod (basal cell carcinoma) CpG (B cell lymphoma)
 - IL-2 (melanoma, renal) IFN-α (melanoma, renal, CML)
- Antibodies

Cytokines

aCTLA4/aPD(L)-1 mAb (melanoma)

- Bacteria BCG (bladder)
- TLR agonists
- Cytokines
- Antibodies
- Surgery

- Imiquimod (basal cell carcinoma) CpG (B cell lymphoma)
- IL-2 (melanoma, renal) IFN- α (melanoma, renal, CML)
- aCTLA4/aPD(L)-1 mAb (melanoma)
- Danger/inflammation? (cervical)

- Bacteria BCG (bladder)
 - TLR agonists Imiquimod (basal cell carcinoma) CpG (B cell lymphoma)
 - Cytokines IL-2 (melanoma, renal) IFN-α (melanoma, renal, CML)
- Antibodies aCTLA4/aPD(L)-1 mAb (melanoma)
- Surgery Danger/inflammation? (cervical)
- Hem. Stem Cells Stem Cell Transpl. (leukemia, lymphoma)

- Bacteria BCG (bladder)
 - TLR agonists Imiquimod (basal cell carcinoma) CpG (B cell lymphoma)
 - Cytokines IL-2 (melanoma, renal) IFN-α (melanoma, renal, CML)
- Antibodies aCTLA4/aPD(L)-1 mAb (melanoma)
- Surgery Danger/inflammation? (cervical)
- Hem. Stem Cells Stem Cell Transpl. (leukemia, lymphoma)
- T cells Adoptive T cell Transfer (melanoma)

- Bacteria BCG (bladder)
 - TLR agonists Imiquimod (basal cell carcinoma) CpG (B cell lymphoma)
 - Cytokines IL-2 (melanoma, renal) IFN- α (melanoma, renal, CML)
- Antibodies aCTLA4/aPD(L)-1 mAb (melanoma)
- Surgery Danger/inflammation? (cervical)
- Hem. Stem Cells Stem Cell Transpl. (leukemia, lymphoma)
- T cells
 Adoptive T cell Transfer (melanoma)
 - Vaccine PAP-loaded DCs (prostate)

How therapeutics may promote cancer

- induce mutation (chemotherapy)
- induce inflammation (cytokines, TLR agonists, agonistic antibodies)
- change the microbiome (antibiotics, foods)?
- block cells/factors that suppress cancer CD8⁺ T cells/NK cells type I IFN, IFN-γ TNF-α - lymphoma? IL-15? IL-15? IL-12/IL-23 IL-17A?

- Innate Immunity & Inflammation can promote or suppress cancer
- Manipulating immunity can promote or suppress cancer
- Understanding of inflammatory cells & molecules in cancer is limited but growing, allowing therapeutic intervention

Cancer Vaccines

Willem W. Overwijk, PhD

Department of Melanoma Medical Oncology MD Anderson Cancer Center Houston, TX, USA

University of Puerto Rico

THE UNIVERSITY OF TEXAS MDAnderson Cancer Center

Making Cancer History®

What is a Cancer Vaccine?

A preparation of a tumor antigen (usually protein) that upon administration stimulates antibody production or cellular antitumor immunity.

When could cancer vaccines be useful?

- Cancer Prevention
- Cancer therapy

When could cancer vaccines be useful?

• Cancer Prevention

Cancer therapy

What is a Cancer Vaccine?

A preparation of a tumor antigen (usually protein) that upon administration stimulates antibody production or cellular antitumor immunity.

What is a Cancer Vaccine?

peptide(s)

A **preparation** of a **tumor antigen** (usually protein) that upon administration stimulates antibody production or cellular antitumor immunity.

Adapted from Dr. Gregory Lizee, Melanoma Med. Oncol.

Adapted from Dr. Gregory Lizee, Melanoma Med. Oncol.

Adapted from Dr. Gregory Lizee, Melanoma Med. Oncol.

The prevalence of somatic mutations across human cancer types

Signatures of mutational processes in human cancer Alexandrov et al. Nature Volume: 500,Pages:415–421Date published:(22 August 2013)DOI:doi:10.1038/nature12477

Mutated Peptides as Cancer Antigens

From Mutation to Vaccine

What is a Cancer Vaccine?

vaccine adjuvant

A **preparation** of a **tumor antigen** (usually protein) that upon administration stimulates antibody production or cellular antitumor immunity.

Vaccine Adjuvants

- mechanisms of action:
 - o antigen depot for prolonged release
 - o protects antigen from degradation
 - o increases antigen uptake by APCs
 - o pro-inflammatory/pro-immunogenic milieu

ORIGINAL ARTICLE

gp100 Peptide Vaccine and Interleukin-2 in Patients with Advanced Melanoma

Douglas J. Schwartzentruber, M.D., David H. Lawson, M.D., Jon M. Richards, M.D., Ph.D., Robert M. Conry, M.D.,
Donald M. Miller, M.D., Ph.D., Jonathan Treisman, M.D., Fawaz Gailani, M.D., Lee Riley, M.D., Ph.D., Kevin Conlon, M.D., Barbara Pockaj, M.D.,
Kari L. Kendra, M.D., Ph.D., Richard L. White, M.D., Rene Gonzalez, M.D., Timothy M. Kuzel, M.D., Brendan Curti, M.D., Phillip D. Leming, M.D.,
Eric D. Whitman, M.D., Jai Balkissoon, M.D., Douglas S. Reintgen, M.D.,
Howard Kaufman, M.D., Francesco M. Marincola, M.D., Maria J. Merino, M.D.,
Steven A. Rosenberg, M.D., Ph.D., Peter Choyke, M.D., Don Vena, B.S., and Patrick Hwu, M.D.
gp100 peptide vaccine has activity in metastatic melanoma

Stage IV and locally advanced stage III melanoma patients

High-dose IL-2 +/- gp100 peptide in IFA (= water-in-oil emulsion)

	IL-2+gp100/IFA	IL-2	p-value
Overall response rate	22.1%	9.7%	0.022
Progression free survival	2.9 months	1.6 months	0.010
Median overall survival	17.6 months	12.8 months	0.096

Clinical Trials of Cancer Vaccines

402 open studies (USA only) using cancer vaccines (www.clinicaltrial.gov)

- 1. Study of Peptide Vaccination With Tumor Associated Antigens Mixed With Montanide in Patients With CNS Tumors
- 2. CpG 7909/IFA With or Without Cyclophosphamide in Combination Either With NY-ESO-1-derived Peptides or the NY-ESO-1 Protein for **NY-ESO-1-expressing Tumors**
- 3. Vaccine Therapy in Treating Patients With Non-Small Cell Lung Cancer (NSCLC) Stages IIIB/IV
- 4. Randomized Study of Adjuvant WT-1 Analog Peptide Vaccine in Patients With Malignant Pleural **Mesothelioma** (MPM) After Completion of Combined Modality Therapy
- 5. Immunotherapy of Stage III/IV Melanoma Patients
- 6. A Clinical Trial of Autologous Oxidized Tumor Cell Lysate Vaccine For Recurrent **Ovarian, Fallopian Tube or Primary Peritoneal Cancer**
- 7. Vaccine Therapy and Monoclonal Antibody Therapy in Treating Patients With Stage III or Stage IV **Melanoma** That Cannot Be Removed by Surgery
- 8. Safety Study of Multiple-Vaccine to Treat Metastatic Breast Cancer
- 9. IDO Peptide Vaccination for Stage III-IV Non Small-cell Lung Cancer Patients.
- 10. Survivin Vaccine Therapy for Patients With Malignant Gliomas
- 11.Phase I Poly IC:LC and NY-ESO-1/gp100/MART (Melanoma)
- 12.A Phase I Study of WT1 Peptides to Induce Anti-Leukemia Immune Responses Following Autologous or Allogeneic Transplantation for AML, CML, ALL, MDS, and B Cell Malignancies
- 13. Vaccination of High Risk Breast Cancer Patients
- 14.MAGE-A3/HPV 16 Vaccine for Squamous Cell Carcinoma of the Head and Neck
- 15. Novel Adjuvants for Peptide-Based Melanoma Vaccines

Peptide-based Cancer Vaccines

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Vaccination against HPV-16 Oncoproteins for Vulvar Intraepithelial Neoplasia

Gemma G. Kenter, M.D., Ph.D., Marij J.P. Welters, Ph.D., A. Rob P.M. Valentijn, Ph.D., Margriet J.G. Lowik, Dorien M.A. Berends-van der Meer, Annelies P.G. Vloon, Farah Essahsah, Lorraine M. Fathers, Rienk Offringa, Ph.D., Jan Wouter Drijfhout, Ph.D., Amon R. Wafelman, Ph.D., Jaap Oostendorp, Ph.D., Gert Jan Fleuren, M.D., Ph.D., Sjoerd H. van der Burg, Ph.D., and Cornelis J.M. Melief, M.D., Ph.D.

79% clinical response 47% CR (>24 months)

Immune response can correlate with clinical outcome

medicine AUGUST 2012

Multipeptide immune response to cancer vaccine IMA901 after single-dose cyclophosphamide associates with longer patient survival

Steffen Walter^{1,21}, Toni Weinschenk^{1,21}, Arnulf Stenzl², Romuald Zdrojowy³, Anna Pluzanska⁴, Cezary Szczylik⁵, Michael Staehler⁶, Wolfram Brugger⁷, Pierre-Yves Dietrich⁸, Regina Mendrzyk¹, Norbert Hilf¹, Oliver Schoor¹, Jens Fritsche¹, Andrea Mahr¹, Dominik Maurer¹, Verona Vass¹, Claudia Trautwein¹, Peter Lewandrowski¹, Christian Flohr¹, Heike Pohla^{9,10}, Janusz J Stanczak¹¹, Vincenzo Bronte¹², Susanna Mandruzzato^{13,14}, Tilo Biedermann¹⁵, Graham Pawelec¹⁶, Evelyna Derhovanessian¹⁶, Hisakazu Yamagishi¹⁷, Tsuneharu Miki¹⁸, Fumiya Hongo¹⁸, Natsuki Takaha¹⁸, Kosei Hirakawa¹⁹, Hiroaki Tanaka¹⁹, Stefan Stevanovic²⁰, Jürgen Frisch¹, Andrea Mayer-Mokler¹, Alexandra Kirner¹, Hans-Georg Rammensee²⁰, Carsten Reinhardt^{1,21} & Harpreet Singh-Jasuja^{1,21}

Vaccination With Patient-Specific Tumor-Derived Antigen in First Remission Improves Disease-Free Survival in Follicular Lymphoma

Stephen J. Schuster, Sattva S. Neelapu, Barry L. Gause, John E. Janik, Franco M. Muggia, Jon P. Gockerman, Jane N. Winter, Christopher R. Flowers, Daniel A. Nikcevich, Eduardo M. Sotomayor, Dean S. McGaughey, Elaine S. Jaffe, Elise A. Chong, Craig W. Reynolds, Donald A. Berry, Carlos F. Santos, Mihaela A. Popa, Amy M. McCord, and Larry W. Kwak

Question

Why do many vaccinated cancer patients not experience tumor regression despite increased levels of cancer-specific T cells?

Question

Why do many vaccinated cancer patients not experience tumor regression despite increased levels of cancer-specific T cells?

- immunosuppressive tumor microenvironment
- too few T cells induced
- poor T cell effector function/wrong phenotype
- poor T cell trafficking to tumor

Combination Adjuvants are Key

Hiep Khong

Where are the T cells?

gp100/IFA s.c. + *eLuc*-transduced pmel-1 T cells i.v.

Rabinovich et al., PNAS 2008

Oil-based vaccines sequester T cells at the vaccination site

pmel-1 T cells at

, tumor site

vaccination site

Water-based vaccines permit T cell accumulation in tumor

Water-based vaccines permit T cell accumulation in tumor

Tumor therapy with long-lived vs. short-lived vaccine

Tumor therapy with long-lived vs. short-lived vaccine

T cell Activation: 2 signals

T cell Activation: 2 signals

T cell Activation: 2 signals

adapted from JP Allison

Improved Survival with Ipilimumab in Patients with Metastatic Melanoma

F. Stephen Hodi, M.D., Steven J. O'Day, M.D., David F. McDermott, M.D., Robert W. Weber, M.D., Jeffrey A. Sosman, M.D., John B. Haanen, M.D., Rene Gonzalez, M.D., Caroline Robert, M.D., Ph.D., Dirk Schadendorf, M.D., Jessica C. Hassel, M.D., Wallace Akerley, M.D., Alfons J.M. van den Eertwegh, M.D., Ph.D., Jose Lutzky, M.D., Paul Lorigan, M.D., Julia M. Vaubel, M.D., Gerald P. Linette, M.D., Ph.D., David Hogg, M.D., Christian H. Ottensmeier, M.D., Ph.D., Celeste Lebbé, M.D., Christian Peschel, M.D., Ian Quirt, M.D., Joseph I. Clark, M.D., Jedd D. Wolchok, M.D., Ph.D., Jeffrey S. Weber, M.D., Ph.D., Jason Tian, Ph.D., Michael J. Yellin, M.D., Geoffrey M. Nichol, M.B., Ch.B., Axel Hoos, M.D., Ph.D., and Walter J. Urba, M.D., Ph.D.

Complete Responder: Patient 11 Metastatic Melanoma

Experienced complete resolution of 2 subcutaneous nodules, 31 lung metastases and 0.5 cm brain metastasis.

Slow, prolonged tumor regression

Checkpoint Blockade + Vaccines

Vaccination and anti-CTLA-4/PD-1 both activate T cells, through different pathways, and could synergize.

However, this was not observed.

Improved Survival with Ipilimumab in Patients with Metastatic Melanoma

F. Stephen Hodi, M.D., Steven J. O'Day, M.D., David F. McDermott, M.D., Robert W. Weber, M.D., Jeffrey A. Sosman, M.D., John B. Haanen, M.D., Rene Gonzalez, M.D., Caroline Robert, M.D., Ph.D., Dirk Schadendorf, M.D., Jessica C. Hassel, M.D., Wallace Akerley, M.D., Alfons J.M. van den Eertwegh, M.D., Ph.D., Jose Lutzky, M.D., Paul Lorigan, M.D., Julia M. Vaubel, M.D., Gerald P. Linette, M.D., Ph.D., David Hogg, M.D., Christian H. Ottensmeier, M.D., Ph.D., Celeste Lebbé, M.D., Christian Peschel, M.D., Ian Quirt, M.D., Joseph I. Clark, M.D., Jedd D. Wolchok, M.D., Ph.D., Jeffrey S. Weber, M.D., Ph.D., Jason Tian, Ph.D., Michael J. Yellin, M.D., Geoffrey M. Nichol, M.B., Ch.B., Axel Hoos, M.D., Ph.D., and Walter J. Urba, M.D., Ph.D.

Improved Survival with Ipilimumab in Patients with Metastatic Melanoma

F. Stephen Hodi, M.D., Steven J. O'Day, M.D., David F. McDermott, M.D., Robert W. Weber, M.D., Jeffrey A. Sosman, M.D., John B. Haanen, M.D., Rene Gonzalez, M.D., Caroline Robert, M.D., Ph.D., Dirk Schadendorf, M.D., Jessica C. Hassel, M.D., Wallace Akerley, M.D., Alfons J.M. van den Eertwegh, M.D., Ph.D., Jose Lutzky, M.D., Paul Lorigan, M.D., Julia M. Vaubel, M.D., Gerald P. Linette, M.D., Ph.D., David Hogg, M.D., Christian H. Ottensmeier, M.D., Ph.D., Celeste Lebbé, M.D., Christian Peschel, M.D., Ian Quirt, M.D., Joseph I. Clark, M.D., Jedd D. Wolchok, M.D., Ph.D., Jeffrey S. Weber, M.D., Ph.D., Jason Tian, Ph.D., Michael J. Yellin, M.D., Geoffrey M. Nichol, M.B., Ch.B., Axel Hoos, M.D., Ph.D., and Walter J. Urba, M.D., Ph.D.

Months

IFA-based vaccination does not synergize with anti-CTLA-4 therapy

IFA-based vaccination sequesters T cells induced by anti-CTLA-4 therapy

Yared Hailemichael

IFA-based vaccination sequesters T cells induced by anti-CTLA-4 therapy

Virus-based vaccination synergizes with anti-CTLA-4 therapy

Conclusions

- Cancer vaccines can have clinical impact
- T cell responses tend to be (too) low or dysfunctional

To induce better T cell / clinical responses:

- Formulation matters: possible T cell sequestration
- Add immunomodulators (cytokines, TLR agonists)
- Combine with checkpoint blockade
- Combination Vaccines: Multiple Immunostimulatory Molecules

Cancer Vaccine Laboratory Dpt. of Melanoma Medical Oncology Hiep Khong Zhimin Dai, M.D. Yared Hailemichael, Ph.D. Manisha Singh, Ph.D.

Patrick Hwu, M.D.

Bethyl Laboratories John Carwile, D.V.M, and team

This work was funded by: NIH/NCI: R01-CA143077 NIH/NCI: PO1 CA128913 Melanoma Research Alliance

MDAnderson Cancer Center

Making Cancer History®