

Computational Framework for Single-Cell Genomics of Tumors

U01CA188590 to A. Krasnitz and M. Wigler

•A template for integrating bench genomics, computation and pathology: an illustration from prostate cancer

- Detection
- Inference
- Visualization
- Clinical utility
- •Early detection of cancer from blood
 - Survey of potential
 - A roadmap to validation

ITCR PI Meeting, 6.1.2017

Cyto-pathological assessment of prostate cancer

Shortcomings of conventional pathology:

- 65% probability that any 2 pathologists disagree by \geq 1 unit of Gleason score.
- Differing scores on core vs. post-RP biopsies.
- Some of low-scoring cases may be aggressive due to subclonal cell populations that go undetected.

Care	A	Complet	Contours	Gleason Score	Gleason Score	Proportion of sectors with	Highest Involvement	Mean Involvement
Case	Age	Sample*	Sectors	Biopsy	Final*	pathology	of Cancer	Of Cancer
NYU003.Benign.1	47	PBXW	13	Benign	NA	0/13	0	0
NYU002.Pin.1	72	PBXW	13	HGPIN	NA	0/13	0	0
COR002.GS6.1	62	TCRP	5	6 (3+3)	6 (3+3)	2/5		
NYU005.GS6.2	64	PBXW	14	7 (3+4)	6 (3+3)#	4/14	30	5
NYU001.GS7.1	63	PBXW	14	7 (4+3)	7 (3+4)	8/14	100	40
NYU007.GS7.2	65	PBXW	13	6 (3+3)	7 (3+4)^	1/13	30	2
NYU010.GS7.3	79	PBXW	15	7 (3+4)	NA	6/15	90	11
NYU004.GS7.4	75	PBXW	14	8 (4+4)	7 (4+3)#	6/14	100	23
NYU011.GS7.5	63	PBXW	10	7 (4+3)	7 (4+3)	5/10	60	14
COR001.GS9.1	77	TCRP	6	9 (5+4)	9 (5+4)	4/6		
COR003.GS9.2	80	TCRP	5	8 (4+4)	9 (4+5)^	3/5		
Median Age	65	Total	122			39/122		

Can single-cell genomic profiling help desambiguate pathology? In particular, clones of cells with major genomic alterations \rightarrow likely aggressive malignancy. Can we detect them?

←

Profiles as collections of "smeared" break-points

table							
tat	A	В	С				
BP1	+	+	-				
BP2	+	+	-				
BP3	+	-	-				
BP4	+	-	+				

Break-noint incidence

https://github.com/KrasnitzLab/SCGV

Genomic/clonal measures complement conventional pathology

6	4	Comulat	Co ato ao	Gleason	Gleason Score	Proportion of sectors with	Proportion of sectors with	Highest Involvement of	Mean Involvement Of	Multiple Clones and/or	Clonal	Number of Clonal	Proportion of Clonal Cells
Case	Age	Sample	Sectors	Score Biopsy	Final*	pathology%	clonality@	Cancer	Cancer	Subclones	Heterogeneity	Features	(Clonal/Total)
NYU003.Benign.1	47	PBXW	13	Benign	NA	0/13	0/13	0	0	no	0	0	0/310
NYU002.Pin.1	72	PBXW	13	HGPIN	NA	0/13	0/13	0	0	no	0	1	0/660
COR002.GS6.1	62	TCRP	5	6 (3+3)	6 (3+3)	2/5	2/5			no	1	34	4/451
NYU005.GS6.2	64	PBXW	14	7 (3+4)	6 (3+3)#	4/14	1/14	30	5	no	1	0	8/309
NYU001.GS7.1	63	PBXW	14	7 (4+3)	7 (3+4)	8/14	8/14	100	40	yes	2	54	147/712
NYU007.GS7.2	65	PBXW	13	6 (3+3)	7 (3+4) ^	1/13	4/13	30	2	yes	3	31	42/279
NYU010.GS7.3	79	PBXW	15	7 (3+4)	NA	6/15	2/15	90	11	yes	3	25	20/341
NYU004.GS7.4	75	PBXW	14	8 (4+4)	7 (4+3)#	6/14	5/14	100	23	yes	2	41	51/314
NYU011.GS7.5	63	PBXW	10	7 (4+3)	7 (4+3)	5/10	4/10	60	14	yes	2	50	21/221
COR001.GS9.1	77	TCRP	6	9 (5+4)	9 (5+4)	4/6	3/6			no	1	285	85/261
COR003.GS9.2	80	TCRP	5	8 (4+4)	9 (4+5) ^	3/5	3/5			yes	2	69	117/389
Median Age	65	Total	122			39/122	32/122						495/4247

Genomic/clonal measures complement conventional pathology

Evaluation Criteria	Correlation with the Gleason Score (Diagnostic Biopsy)	Correlation with the Gleason Score (Diagnostic Biopsy) p-value*	Correlation with the Gleason Score (Revised)^	Correlation with the Gleason Score (Revised) p-value*
Clonal Heterogeneity	0.36	0.26	0.86	0.01
Proportion of clonal cells	0.46	0.14	0.79	0.01
Number of clonal features	0.55	0.08	0.79	0.01
Proportion of sectors with clonality	0.55	0.08	0.79	0.01
Proportion of sectors with patholgy	0.71	0.02	0.7	0.03
Highest Involvement of Cancer	0.83	0.01	0.78	0.02
Mean Involvement Of Cancer	0.80	0.01	0.70	0.03
Gleason Score Biopsy	1.00	0.002	0.64	0.06

Status: bench

- CN alterations common across all grades
- Clones rare below Gleason=6
- Massive clones in all Gleason≥7 cases
- Clones in 2 out of 3 Gleason 6 cases
- Clones are predominantly located in high-Gleason areas
- However, there are exceptions. Evidence for migration?
- Potential to meaningfully supplement conventional pathology
- Near future: pooling DNA from clonal cells for deeper analysis

Status: computing

- SCGV released
- Upstream pipeline: Docker image coming soon
- Near future: modules to handle a variety of DNA prep protocols
- Farther down the road: can pathology image analysis reveal more when supplemented by genomics? Is machine learning from images possible, with genomics as ground truth?

Early detection of cancer

Setting

- Existing blood-based molecular screening methods (e.g., PSA) lack sensitivity, specificity and universality
- Genome-wide DNA copy number (CN) variation is ubiquitous in multiple tumor types
- Tumor cells bear recurrent, clone-wide CN signature
- Use single-cell computational pipeline to peek into the future

A. Krasnitz et al, Trends in Molecular Medicine 23 (2017) 4

Genome involvement in CN variation by cancer type

LUAD

ov

- Widely applicable
- Highly cancer-specific
- Highly sensitive
- Affordable (\$1K per test)

Scenario: draw 10mL of blood ~ 1B nucleated cells. 10 of these are circulating tumor cells.

Key ingredient 1: deplete leukocytes

1K residual cells per 10 mL of blood

(D. Ting et al, Cell Rep. 2014)

Key ingredient 2: single-cell genomics

Very sparse (0.003X) sequencing of individual cells (\$1/cell) Assuming 10 cells from a cancer clone, Knowing what we know about cancer types (TCGA), How successful would we be in detecting them?

Assessment of Feasibility

Input

- 1306 sequencing read sets from diploid cells
- 3852 published integer-valued copy number profiles of cancer genomes (TCGA)
- 11 tumor types represented

Simulation

- Resample read sets from diploid cells to reflect the desired copy-number profile
 and coverage
- 3 kinds of cell populations
 - Clonal cells with CN profiles of TCGA tumors
 - Diploid cells
 - Cells with unstable genomes: a mixture of chromosomes from all TCGA tumors
- Compute pairwise correlations among CN profiles
- Assume 10 clonal cells per blood sample

From correlations to connectivities

From correlations to connectivities

High sensitivity to major tumor types

Specificity: non-clonal tumor-like cells may occasionally correlate...

This image cannot currently be displayed.

...but they are unlikely to form large clusters

Cluster size	10 cells	20 cells	50 cells	100 cells	200 cells	
2	0.0086	0.028	0.15	0.43	0.84	
3	3.00×10 ⁻⁴	0.0018	0.028	0.13	0.51	
4	1.00×10 ⁻⁴	1.00×10 ⁻⁴	1.00×10 ⁻⁴ 0.0036		0.3	
5	0	1.00×10 ⁻⁴	4.00×10 ⁻⁴	0.012	0.16	
6	0	0	2.00×10 ⁻⁴		0.08	
7	0	0	0	6.00×10 ⁻⁴	0.034	
8	0	0	0	3.00×10 ⁻⁴	0.013	
9	0	0	0	0	0.0049	
10	0	0	0	0	0.0012	
12	0	0	0	0	1.00×10 ⁻⁴	

- Widely applicable
- Highly cancer-specific
- Highly sensitive
- Affordable (\$1K per test)

- Widely applicable 🗸
- Highly cancer-specific
- Highly sensitive
- Affordable (\$1K per test)

- Widely applicable 🗸
- Highly cancer-specific ✔
- Highly sensitive
- Affordable (\$1K per test)

- Widely applicable 🖌
- Highly cancer-specific ✔
- Highly sensitive
- Affordable (\$1K per test)

- Widely applicable 🗸
- Highly cancer-specific ✔
- Highly sensitive
- Affordable (\$1K per test) ✓ (assuming 1K cells @\$1/cell)

Further steps

- Test feasibility in newly diagnosed patients: sensitive detection of patient-specific genomic tumor signature in blood
- Other analytes: urine; bronchoalveolar lavage
- Retain and pool libraries from clonal populations for deeper analysis / determination of origin (surface markers, methylation profiling)

Research Team CSHL Mike Wigler Joan Alexander Jude Kendall Alex Krasnitz Viacheslav Zhygulin Guoli Sun Junyan Song **SCGV** Developer Lubomir Chobardjiev

Adopters @

MSKCC Breast tumor biopsies CSHL

Prostate cancer (mouse models) PDAC organoids

Clinical Collaborators (GU Oncology/Pathology) Mt. Sinai Dr. Ashutosh Tewari NYU

Dr Herbert Lenor

Supported by NCI-ITCR (U01CA188590) Simons Foundation