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Multi-scale	Integrative	Analysis	in	Biomedical	Informatics

• Predict	treatment	
outcome,	select,	
monitor	treatments

• Reduce	inter-observer	
variability	in	diagnosis

• Computer	assisted	
exploration	of	new	
classification	schemes

• Tumor	heterogeneity,	
Immune	response



Quantitative	Assessment	of	Pathology

• Pathology	is	basis of	cancer	
classification	

• Inconsistent	Pathology	
classification	will	confound	any	
clinical	research	study

• Quantitation	increasingly	
important- TILS,		Pathology	
subtype	%,	mitoses

• Use	of	histological	features	to	
predict	outcome,	response	to	
treatment

• Novel	microscopy	imaging	
modalities	

• Continuum	between	Radiology	
and	Pathology

Tumor	Infiltrating	
Lymphocytes
By	CNN	Deep	Learning	Method



Pathomics,		Radiomics

Identify	and	segment	trillions	of	objects – nuclei,	glands,	
ducts,	nodules,	tumor	niches	…	from	Pathology,	Radiology	
imaging	datasets
Identify	and	classify	tissue	regions – e.g.	tumor	infiltrated	by	
lymphocytes
Extract	features	from	objects	and	spatio-temporal	regions
Support	queries	against	ensembles	of	features	extracted	from	
multiple	datasets
Statistical	analyses	and	machine	learning	to	link	
Radiology/Pathology	features	to	“omics”	and	outcome	
biological	phenomena
Principle	based	analyses	to	bridge	spatio-temporal	scales	–
linked	Pathology,	Radiology	studies



CANCER	NUCLEI		larger	size	
range

NORMAL	NUCLEI		smaller	size	
range

IMAGES	FROM	THE	SAME	PATIENT,	AS	THE	SAME	
MAGNIFICATION

CANCER NORMA
L

EXTRACTED	PATHOMIC	FEATURES	HAVE	REAL	CLINICAL	
MEANING



Prediction	without	
editing

Prediction	edited	by	
Pathologist	2

Prediction	edited	by	
Pathologist	1

Tissue	Infiltrating	Maps	– TCGA	Pan	Cancer	Atlas	Project



Tools	to	Analyze	Morphology	and	Spatially	Mapped	
Molecular	Data	- U24	CA180924	

• Specific	Aim	1	Analysis	pipelines for	multi- scale,	
integrative	image	analysis,	classification.
• Specific	Aim	2:	Database infrastructure	to	manage	
and	query	Pathomics	features.
• Specific	Aim	3:	HPC	software	that	targets	clusters,	
cloud	computing,	and	leadership	scale	systems.
• Specific	Aim	4:	Develop	visualizationmiddleware	
to	relate	Pathomics	feature	and	image	data	and	to		
integrate	Pathomics	image	and	“omic”	data.



Software	Tools

• Suite	of	software	tools	
–caMicroscope:	Visualization	of	tissue	
images	and	tissue	segmentation	
results
–FeatureDB:	Management	of	imaging	
features
–FeatureVis:	Visual	analytics	for	
exploration	of	imaging	features
–Deep	Viz:	Deep	Learning	Visual	
Training	Environment



SEER	Virtual	Tissue	Repository

• FDA	approval	for	diagnosis	use	of	WSIs	will	enable	
collection	and	analysis	of	WSI	information	for	all	cancer	
patients
• Current	project	-- SEER	registries	are	a	potential	source	
of	information	about	unusual	outcomes	and	rare	
cancers
• Leverage	Pathology		labs	which	store	FFPE	tumors,	
slides	and	digital	images
• Link	to	SEER	data	– track	long	term	outcomes	
• Accrue	linked	clinical	data,	Pathology	slides	from	SEER	
sites



SEER	Virtual	Tissue	Repository
• Lynne	Penberthy	MD,	MPH		NCI	SEER
• Ed	Helton	PhD	NCI	CBIIT	Clinical	Imaging	Program
• Ulrike	Wagner	CBIIT	Clinical	Imaging	Program
• Radim	Moravec	NCI	PhD,		NCI	SEER
• Ashish	Sharma		PhD	Biomedical	Informatics	Emory
• Joel	Saltz	MD,	PhD	Biomedical	Informatics	Stony	Brook
• Tahsin	Kurc	PhD	Biomedical	Informatics	Stony	Brook
• Georgia	Tourassi,	Oak	Ridge	National	Laboratory	

Vision	–Population/epidemiological	cancer	research	using	rich	cancer	
phenotype	information	available	from	Pathology	tissue	studies
Pathology	is	central	to	cancer	diagnosis	– primary	cancer	phenotype	
information	
NCIP/Leidos	14X138		and	HHSN261200800001E		- NCI



SEER	VIRTUAL	TISSUE	
REPOSITORY

• Create	linked	collection	of	de-identified	clinical	
data	and	whole	slide	images
• Extract	features	from	two	patient	cohorts	and	
control	populations	(pancreas	and	breast	cancer).	
• Enable	search,	analysis,	epidemiological	
characterization
• Pilot	focus	on	extreme	outcome	Breast	Cancer,		
Pancreatic	Cancer	cases
• Display	images	and	analyzed	features



Image	analysis	methods	for	estimating		TCGA		
tumor	lymphocyte	infiltration:	TCGA	Pan	Cancer	
Atlas
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• John	Van	Arnam

• Anne	Zhao
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• Le	Hou

• Vu	Nyugen



Imaging	Based	TIL	Analysis	Workflow	

Iterative	Image	Based	Deep	Learning	Training

• Training	results	
generalize	across	
many	tissue	types
• Initial	training	on	
patches	(20K)
• Iterative	training	
using	visual	tool
• Algorithm	generates	
prediction,	
pathologist	corrects	
and	feeds	back
• Patch	based	sampling	
for	threshold	
adjustment



Comparison	with	Molecular	lymphocyte	estimates

Estimate	leukocyte	fraction	from	methylation
CIBERSORT	to	identify	lymphocyte	subset:
B.cells.naive,	B.cells.memory,	T.cells.CD8,	
T.cells.CD4.naive,	T.cells.CD4.memory.resting,	
T.cells.CD4.memory.activated,	
T.cells.follicular.helper,	T.cells.regulatory..Tregs,	
T.cells.gamma.delta,	NK.cells.resting,	
NK.cells.activated
Compare	with	lymphocyte	fraction	obtained	from	TIL	
image	analysis



Comparisons	between	Molecular	and	Imaging	TIL	

Tumor	Type Spearman	Rank P	value

LUAD 0.46 2.6	x	e	-24

LUSC 0.32 7.6	x	e	-12

BRCA 0.36 1.2	x	e	-31

PAAD 0.33 5.7	x	e	-6

COAD 0.28 1.1	x	e	-17

SKCM 0.49 1.9	x	e	-29

UVM NOT	Significant

PRAD 0.16 0.002

Data	subset		– we	have	now	completed	TIL	analysis	for
14	TCGA	tumor	types



LUAD,	BRCA,	PAAD	and	UVM		- TIL	Image	vs	TIL	Molecular	Fraction		(left	to	right	by	row).	

Spearman	rank	
correlation=	0.45
P	value	6.3	6.4e-29

Spearman		rank	
correlation=	0.35
2.7	e-32

spearman	rank	
correlation=	0.33
pval	=	5.74e-06

Not	
significant

Molecular	vs	Imaging	TIL	Estimates



Towards	Generation,	Management,	and	
Exploration	of	Combined	Radiomics	and	Pathomics	

Datasets	for	Cancer	Research

Joel	Saltz,	Jonas	Almeida,	Yi	Gao,	Ashish	Sharma,	Erich	
Bremer,	Tammy	DiPrima,	Mary	Saltz,	Jayashree	Kalpathy-

Cramer,	Tahsin	Kurc

Won	2017	AMIA	Summit	Marco	Ramoni	Award



Methods



caMicroscope

• Web-based	patform	for	visualizing	digital	
pathology	images	with	segmentation	results	
and	features	that	are	overlaid	on	the	images

• Provides	APIs	that	allow	interactive	back-and-
forth	between	feature	exploration	and	image	
visualization



caMicroscope



FeatureDB

• Based	on	NoSQL	document	database
• Flexible	data	model	in	JSON	format
– Borrows	elements	from	AIM	and	PAIS	models

• Organizes	segmentation	and	feature	data	into	
GeoJSON	compatible	format
– Segmentation	results	as	polygons
– Features	as	key-value	pairs

• Shape,	intensity,	texture	and	size	features	



FeatureVis

• Web-based	apps	for	coordinated	spatial	and	
feature	based	visual	analytics	

• visualization	of	inter-related	imaging	features	
• Inter-relate	collections	of	features	with	
images	and	non-imaging	data	such	as	gene	
alteration	and	survival

• Apps	go	from	feature	level	to	population	level	
and	back	to	individual	patients	and	features



FeatureVis



Feature	Explorer	- Integrated		Pathomics	Features,	
Outcomes		and	“omics”	– TCGA	NSCLC	Adeno	Carcinoma	
Patients



Containerization



Container	Architecture

• The	application	service	group - single	container	that	hosts	a	Web	applications	
to	visualize	and	curate	images	and	analysis	results.	caMicroscope,	
FeatureScape,	Classification	Editing	Tool,	Segmentation	Curation	Tool

• The	data	management	service	group is	implemented	as	a	set	of	three	
containers.	These	containers	are	responsible	for	data	loading,	data	
management,	and	query	processing.	

• The	image	analysis	group is	made	up	of	three	containers,	which	collectively	
execute	image	analysis	requests
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